No Arabic abstract
We consider a smart grid with an independent system operator (ISO), and distributed aggregators who have energy storage and purchase energy from the ISO to serve its customers. All the entities in the system are foresighted: each aggregator seeks to minimize its own long-term payments for energy purchase and operational costs of energy storage by deciding how much energy to buy from the ISO, and the ISO seeks to minimize the long-term total cost of the system (e.g. energy generation costs and the aggregators costs) by dispatching the energy production among the generators. The decision making of the entities is complicated for two reasons. First, the information is decentralized: the ISO does not know the aggregators states (i.e. their energy consumption requests from customers and the amount of energy in their storage), and each aggregator does not know the other aggregators states or the ISOs state (i.e. the energy generation costs and the status of the transmission lines). Second, the coupling among the aggregators is unknown to them. Specifically, each aggregators energy purchase affects the price, and hence the payments of the other aggregators. However, none of them knows how its decision influences the price because the price is determined by the ISO based on its state. We propose a design framework in which the ISO provides each aggregator with a conjectured future price, and each aggregator distributively minimizes its own long-term cost based on its conjectured price as well as its local information. The proposed framework can achieve the social optimum despite being decentralized and involving complex coupling among the various entities.
We propose a contextual-bandit approach for demand side management by offering price incentives. More precisely, a target mean consumption is set at each round and the mean consumption is modeled as a complex function of the distribution of prices sent and of some contextual variables such as the temperature, weather, and so on. The performance of our strategies is measured in quadratic losses through a regret criterion. We offer $T^{2/3}$ upper bounds on this regret (up to poly-logarithmic terms)---and even faster rates under stronger assumptions---for strategies inspired by standard strategies for contextual bandits (like LinUCB, see Li et al., 2010). Simulations on a real data set gathered by UK Power Networks, in which price incentives were offered, show that our strategies are effective and may indeed manage demand response by suitably picking the price levels.
Demand side management (DSM) is a key solution for reducing the peak-time power consumption in smart grids. To provide incentives for consumers to shift their consumption to off-peak times, the utility company charges consumers differential pricing for using power at different times of the day. Consumers take into account these differential prices when deciding when and how much power to consume daily. Importantly, while consumers enjoy lower billing costs when shifting their power usage to off-peak times, they also incur discomfort costs due to the altering of their power consumption patterns. Existing works propose stationary strategies for the myopic consumers to minimize their short-term billing and discomfort costs. In contrast, we model the interaction emerging among self-interested, foresighted consumers as a repeated energy scheduling game and prove that the stationary strategies are suboptimal in terms of long-term total billing and discomfort costs. Subsequently, we propose a novel framework for determining optimal nonstationary DSM strategies, in which consumers can choose different daily power consumption patterns depending on their preferences, routines, and needs. As a direct consequence of the nonstationary DSM policy, different subsets of consumers are allowed to use power in peak times at a low price. The subset of consumers that are selected daily to have their joint discomfort and billing costs minimized is determined based on the consumers power consumption preferences as well as on the past history of which consumers have shifted their usage previously. Importantly, we show that the proposed strategies are incentive-compatible. Simulations confirm that, given the same peak-to-average ratio, the proposed strategy can reduce the total cost (billing and discomfort costs) by up to 50% compared to existing DSM strategies.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to bridge the gap between Demand-Side Management (DSM) and microgrid portfolio, sizing and placement optimization. Although DSM helps energy consumers to take advantage of recent developments in utilization of Distributed Energy Resources (DERs) especially microgrids, a huge need of connecting DSM results to microgrid optimization is being felt. Consequently, a novel model that integrates the DSM techniques and microgrid modules in a two-layer configuration is proposed. In the first layer, DSM is employed to minimize the electricity demand (e.g. heating and cooling loads) based on zone temperature set-point. Using the optimal load profile obtained from the first layer, all investment and operation costs of a microgrid are then optimized in the second layer. The presented model is based on the existing optimization platform developed by RU-LESS (Rutgers University, Laboratory for Energy Smart Systems) team. As a demonstration, the developed model has been used to study the impact of smart HVAC control on microgrid compared to traditional HVAC control. The results show a noticeable reduction in total annual energy consumption and annual cost of microgrid.
This paper, by comparing three potential energy trading systems, studies the feasibility of integrating a community energy storage (CES) device with consumer-owned photovoltaic (PV) systems for demand-side management of a residential neighborhood area network. We consider a fully-competitive CES operator in a non-cooperative Stackelberg game, a benevolent CES operator that has socially favorable regulations with competitive users, and a centralized cooperative CES operator that minimizes the total community energy cost. The former two game-theoretic systems consider that the CES operator first maximizes their revenue by setting a price signal and trading energy with the grid. Then the users with PV panels play a non-cooperative repeated game following the actions of the CES operator to trade energy with the CES device and the grid to minimize energy costs. The centralized CES operator cooperates with the users to minimize the total community energy cost without appropriate incentives. The non-cooperative Stackelberg game with the fully-competitive CES operator has a unique Stackelberg equilibrium at which the CES operator maximizes revenue and users obtain unique Pareto-optimal Nash equilibrium CES energy trading strategies. Extensive simulations show that the fully-competitive CES model gives the best trade-off of operating environment between the CES operator and the users.
The emerging interest in deployment of renewable energy resources (RESs) in smart system represents a great challenge to both system planners and owners of Microgrids (MGs) operators. In this regard, we propose a Tri-level power market models for designing demand side management systems to match power supply and shape renewable power generations. We characterize the resulting equilibria in competitive as well as oligopolistic market, and propose distributed demand response algorithms to achieve the equilibria. The models serve as a starting point to include the appliance-level details and constraints for designing practical demand response schemes for smart power grids. In order to show the usefulness of proposed model, two various case studies are considered in this paper: uncoordinated and coordinated load demand. A novel mathematical model is further developed whereby the behavior of RES, in response to different electricity prices owing to demand response programs, is considered in generating the energy consumption of MGs.