Do you want to publish a course? Click here

Target Tracking for Contextual Bandits: Application to Demand Side Management

79   0   0.0 ( 0 )
 Added by Gilles Stoltz
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a contextual-bandit approach for demand side management by offering price incentives. More precisely, a target mean consumption is set at each round and the mean consumption is modeled as a complex function of the distribution of prices sent and of some contextual variables such as the temperature, weather, and so on. The performance of our strategies is measured in quadratic losses through a regret criterion. We offer $T^{2/3}$ upper bounds on this regret (up to poly-logarithmic terms)---and even faster rates under stronger assumptions---for strategies inspired by standard strategies for contextual bandits (like LinUCB, see Li et al., 2010). Simulations on a real data set gathered by UK Power Networks, in which price incentives were offered, show that our strategies are effective and may indeed manage demand response by suitably picking the price levels.



rate research

Read More

A major research direction in contextual bandits is to develop algorithms that are computationally efficient, yet support flexible, general-purpose function approximation. Algorithms based on modeling rewards have shown strong empirical performance, but typically require a well-specified model, and can fail when this assumption does not hold. Can we design algorithms that are efficient and flexible, yet degrade gracefully in the face of model misspecification? We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits that adapt to unknown model misspecification -- both for finite and infinite action settings. Given access to an online oracle for square loss regression, our algorithm attains optimal regret and -- in particular -- optimal dependence on the misspecification level, with no prior knowledge. Specializing to linear contextual bandits with infinite actions in $d$ dimensions, we obtain the first algorithm that achieves the optimal $O(dsqrt{T} + varepsilonsqrt{d}T)$ regret bound for unknown misspecification level $varepsilon$. On a conceptual level, our results are enabled by a new optimization-based perspective on the regression oracle reduction framework of Foster and Rakhlin, which we anticipate will find broader use.
Personalized recommendation based on multi-arm bandit (MAB) algorithms has shown to lead to high utility and efficiency as it can dynamically adapt the recommendation strategy based on feedback. However, unfairness could incur in personalized recommendation. In this paper, we study how to achieve user-side fairness in personalized recommendation. We formulate our fair personalized recommendation as a modified contextual bandit and focus on achieving fairness on the individual whom is being recommended an item as opposed to achieving fairness on the items that are being recommended. We introduce and define a metric that captures the fairness in terms of rewards received for both the privileged and protected groups. We develop a fair contextual bandit algorithm, Fair-LinUCB, that improves upon the traditional LinUCB algorithm to achieve group-level fairness of users. Our algorithm detects and monitors unfairness while it learns to recommend personalized videos to students to achieve high efficiency. We provide a theoretical regret analysis and show that our algorithm has a slightly higher regret bound than LinUCB. We conduct numerous experimental evaluations to compare the performances of our fair contextual bandit to that of LinUCB and show that our approach achieves group-level fairness while maintaining a high utility.
We consider a smart grid with an independent system operator (ISO), and distributed aggregators who have energy storage and purchase energy from the ISO to serve its customers. All the entities in the system are foresighted: each aggregator seeks to minimize its own long-term payments for energy purchase and operational costs of energy storage by deciding how much energy to buy from the ISO, and the ISO seeks to minimize the long-term total cost of the system (e.g. energy generation costs and the aggregators costs) by dispatching the energy production among the generators. The decision making of the entities is complicated for two reasons. First, the information is decentralized: the ISO does not know the aggregators states (i.e. their energy consumption requests from customers and the amount of energy in their storage), and each aggregator does not know the other aggregators states or the ISOs state (i.e. the energy generation costs and the status of the transmission lines). Second, the coupling among the aggregators is unknown to them. Specifically, each aggregators energy purchase affects the price, and hence the payments of the other aggregators. However, none of them knows how its decision influences the price because the price is determined by the ISO based on its state. We propose a design framework in which the ISO provides each aggregator with a conjectured future price, and each aggregator distributively minimizes its own long-term cost based on its conjectured price as well as its local information. The proposed framework can achieve the social optimum despite being decentralized and involving complex coupling among the various entities.
This paper studies the adversarial graphical contextual bandits, a variant of adversarial multi-armed bandits that leverage two categories of the most common side information: emph{contexts} and emph{side observations}. In this setting, a learning agent repeatedly chooses from a set of $K$ actions after being presented with a $d$-dimensional context vector. The agent not only incurs and observes the loss of the chosen action, but also observes the losses of its neighboring actions in the observation structures, which are encoded as a series of feedback graphs. This setting models a variety of applications in social networks, where both contexts and graph-structured side observations are available. Two efficient algorithms are developed based on texttt{EXP3}. Under mild conditions, our analysis shows that for undirected feedback graphs the first algorithm, texttt{EXP3-LGC-U}, achieves the regret of order $mathcal{O}(sqrt{(K+alpha(G)d)Tlog{K}})$ over the time horizon $T$, where $alpha(G)$ is the average emph{independence number} of the feedback graphs. A slightly weaker result is presented for the directed graph setting as well. The second algorithm, texttt{EXP3-LGC-IX}, is developed for a special class of problems, for which the regret is reduced to $mathcal{O}(sqrt{alpha(G)dTlog{K}log(KT)})$ for both directed as well as undirected feedback graphs. Numerical tests corroborate the efficiency of proposed algorithms.
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorithms, especially when the dataset is collected in a distributed fashion or when a human in the loop is needed to implement a different policy. Exploring with a single non-reactive policy is beneficial in such cases. Assuming some batch contexts are available, we design a single stochastic policy to collect a good dataset from which a near-optimal policy can be extracted. We present a theoretical analysis as well as numerical experiments on both synthetic and real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا