Do you want to publish a course? Click here

Software Defined Radio Implementation of Signaling Splitting in Hyper-Cellular Network

395   0   0.0 ( 0 )
 Added by Tao Zhao
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

This paper presents the design and implementation of signaling splitting scheme in hyper-cellular network on a software defined radio platform. Hyper-cellular network is a novel architecture of future mobile communication systems in which signaling and data are decoupled at the air interface to mitigate the signaling overhead and allow energy efficient operation of base stations. On an open source software defined radio platform, OpenBTS, we investigate the feasibility of signaling splitting for GSM protocol and implement a novel system which can prove the proposed concept. Standard GSM handsets can camp on the network with the help of signaling base station, and data base station will be appointed to handle phone calls on demand. Our work initiates the systematic approach to study hyper-cellular concept in real wireless environment with both software and hardware implementations.



rate research

Read More

More and more emerging Internet of Things (IoT) applications involve status updates, where various IoT devices monitor certain physical processes and report their latest statuses to the relevant information fusion nodes. A new performance measure, termed the age of information (AoI), has recently been proposed to quantify the information freshness in time-critical IoT applications. Due to a large number of devices in future IoT networks, the decentralized channel access protocols (e.g. random access) are preferable thanks to their low network overhead. Built on the AoI concept, some recent efforts have developed several AoI-oriented ALOHA-like random access protocols for boosting the network-wide information freshness. However, all relevant works focused on theoretical designs and analysis. The development and implementation of a working prototype to evaluate and further improve these random access protocols in practice have been largely overlooked. Motivated as such, we build a software-defined radio (SDR) prototype for testing and comparing the performance of recently proposed AoI-oriented random access protocols. To this end, we implement a time-slotted wireless system by devising a simple yet effective over-the-air time synchronization scheme, in which beacons that serve as reference timing packets are broadcast by an access point from time to time. For a complete working prototype, we also design the frame structures of various packets exchanged within the system. Finally, we design a set of experiments, implement them on our prototype and test the considered algorithms in an office environment.
376 - Jiaxin Liang , He Chen , 2020
Time-sensitive wireless networks are an important enabling building block for many emerging industrial Internet of Things (IoT) applications. Quick prototyping and evaluation of time-sensitive wireless technologies are desirable for R&D efforts. Software-defined radio (SDR), by allowing wireless signal processing on a personal computer (PC), has been widely used for such quick prototyping efforts. Unfortunately, because of the textit{uncontrollable delay} between the PC and the radio board, SDR is generally deemed not suitable for time-sensitive wireless applications that demand communication with low and deterministic latency. For a rigorous evaluation of its suitability for industrial IoT applications, this paper conducts a quantitative investigation of the synchronization accuracy and end-to-end latency achievable by an SDR wireless system. To this end, we designed and implemented a time-slotted wireless system on the Universal Software Radio Peripheral (USRP) SDR platform. We developed a time synchronization mechanism to maintain synchrony among nodes in the system. To reduce the delays and delay jitters between the USRP board and its PC, we devised a {textit{Just-in-time}} algorithm to ensure that packets sent by the PC to the USRP can reach the USRP just before the time slots they are to be transmitted. Our experiments demonstrate that $90%$ ($100%$) of the time slots of different nodes can be synchronized and aligned to within $ pm 0.5$ samples or $ pm 0.05mu s$ ($ pm 1.5$ samples or $ pm 0.15mu s$), and that the end-to-end packet delivery latency can be down to $3.75ms$. This means that SDR-based solutions can be applied in a range of IIoT applications that require tight synchrony and moderately low latency, e.g., sensor data collection, automated guided vehicle (AGV) control, and Human-Machine-Interaction (HMI).
Machine-to-machine (M2M) communications have attracted great attention from both academia and industry. In this paper, with recent advances in wireless network virtualization and software-defined networking (SDN), we propose a novel framework for M2M communications in software-defined cellular networks with wireless network virtualization. In the proposed framework, according to different functions and quality of service (QoS) requirements of machine-type communication devices (MTCDs), a hypervisor enables the virtualization of the physical M2M network, which is abstracted and sliced into multiple virtual M2M networks. Moreover, we formulate a decision-theoretic approach to optimize the random access process of M2M communications. In addition, we develop a feedback and control loop to dynamically adjust the number of resource blocks (RBs) that are used in the random access phase in a virtual M2M network by the SDN controller. Extensive simulation results with different system parameters are presented to show the performance of the proposed scheme.
There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks challenges handled by SDN-based vehicular networks.
Computer networks have become a critical infrastructure. In fact, networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be very flexible and support fast updates, e.g., due to policy changes, increasing traffic, or failures. This paper presents a structured survey of mechanism and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable consistency properties that should be provided throughout a network update, the algorithmic techniques which are needed to meet these consistency properties, and the implications on the speed and costs at which updates can be performed. We also explain the relationship between consistent network update problems and classic algorithmic optimization ones. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs) and their primary need for correct and efficient update techniques, the fundamental underlying problems are not new, and we provide a historical perspective of the subject as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا