Do you want to publish a course? Click here

Generation of high-frequency combs locked to atomic resonances by quantum phase modulation

140   0   0.0 ( 0 )
 Added by Christian Ott
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum systems dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.



rate research

Read More

230 - Olivier Pinel 2011
Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example in cluster state computation. They can be generated either by mixing different squeezed light sources using linear optical operations, or directly in a multimode optical device. In parallel, frequency combs are perfect tools for high precision metrological applications and for quantum time transfer. Synchronously Pumped Optical Parametric Oscillators (SPOPOs) have been theoretically shown to produce multimode non-classical frequency combs. In this paper, we present the first experimental generation and characterization of a femtosecond quantum frequency comb generated by a SPOPO. In particular, we give the experimental evidence of the multimode nature of the generated quantum state and, by studying the spectral noise distribution of this state, we show that at least three nonclassical independent modes are required to describe it.
We demonstrate a two-photon interference experiment for phase coherent biphoton frequency combs (BFCs), created through spectral amplitude filtering of biphotons with a continuous broadband spectrum. By using an electro-optic phase modulator, we project the BFC lines into sidebands that overlap in frequency. The resulting high-visibility interference patterns provide an approach to verify frequency-bin entanglement even with slow single-photon detectors; we show interference patterns with visibilities that surpass the classical threshold for qubit and qutrit states. Additionally, we show that with entangled qutrits, two-photon interference occurs even with projections onto different final frequency states. Finally, we show the versatility of this scheme for weak-light measurements by performing a series of two-dimensional experiments at different signal-idler frequency offsets to measure the dispersion of a single-mode fiber.
We present a method of phase-locking any number of continuous-wave lasers to an optical frequency comb (OFC) that enables independent frequency positioning and control of each laser while still maintaining lock to the OFC. The scheme employs an acousto-optic modulator (AOM) in a double pass configuration added to each laser before its light is compared by optical heterodyne with the comb. The only requirement is that the tuning bandwidth of the double pass AOM setup be larger than half the OFC repetition rate. We demonstrate this scheme and achieve an arbitrary frequency tuning precision, a tuning rate of 200~MHz/s and a readout precision at the 1~kHz level.
Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{rm ceo}$ and the pulse repetition-rate $f_{rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Sr Rydberg states. The DFG technique allows for a compact and robust, passively $f_{rm ceo}$ stable frequency comb significantly improving reliability in practical applications.
146 - Z. Zheng , O. Mishina , N. Treps 2014
We propose a Raman quantum memory scheme that uses several atomic ensembles to store and retrieve the multimode highly entangled state of an optical quantum frequency comb, such as the one produced by parametric down-conversion of a pump frequency comb. We analyse the efficiency and the fidelity of such a quantum memory. Results show that our proposal may be helpful to multimode information processing using the different frequency bands of an optical frequency comb.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا