Do you want to publish a course? Click here

Difference-frequency combs in cold atom physics

67   0   0.0 ( 0 )
 Added by Thomas Puppe
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{rm ceo}$ and the pulse repetition-rate $f_{rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical frequency measurement of Sr Rydberg states. The DFG technique allows for a compact and robust, passively $f_{rm ceo}$ stable frequency comb significantly improving reliability in practical applications.



rate research

Read More

We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.
Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with dead time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise of the laser interrogating the atomic transition. Despite recent advances in optical clock stability achieved by improving laser coherence, the Dick effect has continually limited optical clock performance. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability of $6 times 10^{-17} / sqrt{tau}$ for an averaging time $tau$ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor $Q> 4 times 10^{15}$.
A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum systems dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.
169 - Lin Dan , Hao Xu , Ping Guo 2021
Two-photon resonance transition technology has been proven to have a wide range of applications,its limited by the available wavelength of commercial lasers.The application of optical comb technology with direct two-photon transition (DTPT) will not be restricted by cw lasers.This article will further theoretically analyze the dynamics effects of the DTPT process driven by optical frequency combs. In a three-level atomic system, the population of particles and the amount of momentum transfer on atoms are increased compared to that of the DTPT-free process. The 17% of population increasement in 6-level system of cesium atoms has verified that DTPT process has a robust enhancement on the effect of momentum transfer. It can be used to excite the DTPTs of rubidium and cesium simultaneously with the same mode-locked laser. And this technology has potential applications in cooling different atoms to obtain polar cold molecules, as well as high-precision spectroscopy measurement.
228 - Olivier Pinel 2011
Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example in cluster state computation. They can be generated either by mixing different squeezed light sources using linear optical operations, or directly in a multimode optical device. In parallel, frequency combs are perfect tools for high precision metrological applications and for quantum time transfer. Synchronously Pumped Optical Parametric Oscillators (SPOPOs) have been theoretically shown to produce multimode non-classical frequency combs. In this paper, we present the first experimental generation and characterization of a femtosecond quantum frequency comb generated by a SPOPO. In particular, we give the experimental evidence of the multimode nature of the generated quantum state and, by studying the spectral noise distribution of this state, we show that at least three nonclassical independent modes are required to describe it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا