Angle resolved photoemission spectroscopy is used to observe changes in the electronic structure of bulk-doped topological insulator Cu$_x$Bi$_2$Se$_3$ as additional copper atoms are deposited onto the cleaved crystal surface. Carrier density and surface-normal electrical field strength near the crystal surface are estimated to consider the effect of chemical surface gating on atypical superconducting properties associated with topological insulator order, such as the dynamics of theoretically predicted Majorana Fermion vortices.
Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (SrxBi2Se3) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi2Se3, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor
Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like systems, the three dimensional (3D) topological insulators can host magnetism and superconductivity which has generated widespread research activity in condensed-matter and materials-physics communities. Thus there is an explosion of interest in understanding the rich interplay between topological and the broken-symmetry states (such as superconductivity), greatly spurred by proposals that superconductivity introduced into certain band structures will host exotic quasiparticles which are of interest in quantum information science. The observations of superconductivity in doped Bi_2Se_3 (Cu$_x$Bi$_2$Se$_3$) and doped Bi_2Te_3 (Pd$_x$-Bi$_2$Te$_3$ T$_c$ $sim$ 5K) have raised many intriguing questions about the spin-orbit physics of these ternary complexes while any rigorous theory of superconductivity remains elusive. Here we present key measurements of electron dynamics in systematically tunable normal state of Cu$_x$Bi$_2$Se$_3$ (x=0 to 12%) gaining insights into its spin-orbit behavior and the topological nature of the surface where superconductivity takes place at low temperatures. Our data reveal that superconductivity occurs (in sample compositions) with electrons in a bulk relativistic kinematic regime and we identify that an unconventional doping mechanism causes the topological surface character of the undoped compound to be preserved at the Fermi level of the superconducting compound, where Cooper pairing occurs at low temperatures. These experimental observations provide important clues for developing a theory of topological-superconductivity in 3D topological insulators.
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$/Nb devices. The conductance spectra of the devices show the presence of a large induced gap in the STI as well as the induction of superconducting correlations in the normal part of the TI on the order of the Thouless energy. The shape of the conductance modulation around zero-energy varies between devices and can be explained by existing theory of s-wave-induced superconductivity in SNN (S is a superconductor, N a superconducting proximized material and N is a normal metal) devices. All the conductance spectra show a conductance dip at the induced gap of the STI.
The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a an s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$ and the stoichiometric BiSbTeSe$_2$ have been used as three dimensional TI. In the case of Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe$_2$ with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.
We study electronic properties of a superconducting topological insulator whose parent material is a topological insulator. We calculate the temperature dependence of the specific heat and spin susceptibility for four promising superconducting pairings proposed by L. Fu and E. Berg (Phys. Rev. Lett. 105, 097001). Since the line shapes of temperature dependence of specific heat are almost identical among three of the four pairings, it is difficult to identify them simply from the specific heat. On the other hand, we obtain wide varieties of the temperature dependence of spin susceptibility for each pairing reflecting the spin structure of Cooper pair. We propose that the pairing symmetry of superconducting topological insulator can be determined from measurement of Knight shift by changing the direction of applied magnetic field.
L. A. Wray
,S. Xu
,M. Neupane
.
(2013)
.
"Chemically gated electronic structure of a superconducting doped topological insulator system"
.
L. Andrew Wray
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا