Do you want to publish a course? Click here

OH Maser Sources in W49N: Probing Magnetic Field and Differential Anisotropic Scattering with Zeeman pairs using the VLBA

117   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our analysis of a VLBA 12-hour synthesis observation of the OH masers in a well-known star-forming region W49N has yielded valuable data that enables us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data consisting of detailed high angular-resolution images (with beam-width ~20 milli-arc-seconds) of several dozen OH maser sources or spots, at 1612, 1665 and 1667 MHz, reveal anisotropic scatter broadening, with typical sizes of a few tens of milli-arc-seconds and axial ratios between 1.5 to 3. Such anisotropies have been reported earlier by Desai, Gwinn & Diamond (1994) and interpreted as induced by the local magnetic field parallel to the Galactic plane. However, we find a) the apparent angular sizes on the average a factor of ~2.5 less than those reported by Desai et al. (1994), indicating significantly less scattering than inferred earlier, and b) a significant deviation in the average orientation of the scatter-broadened images (by ~10 degrees) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6 sigma) are apparent in the scatter broadened images for the two hands of circular polarization, even when apparent velocity separation is less than 0.1 km/s. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest the possible implications for the structure of magnetic fields within this star-forming region.



rate research

Read More

Our analysis of a VLBA 12-hour synthesis observations of the OH masers in W49N has provided detailed high angular-resolution images of the maser sources, at 1612, 1665 and 1667 MHz. The images, of several dozens of spots, reveal anisotropic scatter broadening; with typical sizes of a few tens of milli-arc-seconds and axial ratios between 1.5 to 3. The image position angles oriented perpendicular to the galactic plane are interpreted in terms of elongation of electron-density irregularities parallel to the galactic plane, due to a similarly aligned local magnetic field. However, we find the apparent angular sizes on the average a factor of 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred earlier. The average position angle of the scattered broadened images is also seen to deviate significantly (by about 10 degrees) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, we find significant differences in the scatter broadened images for the two hands of polarization, even when apparent velocity separation is less than 0.1 km/s. Here we present the details of our observations and analysis, and discuss the interesting implications of our results for the intervening anisotropic magneto-ionic medium, as well as a comparison with the expectations based on earlier work.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with tenth-arcsec spatial resolution, at velocity spacing 0.09 km/s, and in both senses of circular polarization, reveal 59 small diameter maser spots. The spots are scattered over 2-arcsec, coincident with a strong ultracompact HII region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from -1.1 to -4.7 mG, with a median value of -3.5 mG. Excited state masers of OH at 6035 MHz and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of -5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong HII regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.
154 - E. Momjian , A. P. Sarma 2016
We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the star forming region DR21(OH). In a 219 Jy/beam maser centered at an LSR velocity of 0.83 km s$^{-1}$, we find a 20-$sigma$ detection of $zB_{text{los}} = 53.5 pm 2.7$ Hz. If 44 GHz methanol masers are excited at $n sim 10^{7-8}$ cm$^{-3}$, then the $B~vs.~n^{1/2}$ relation would imply from comparison with Zeeman effect detections in the CN($1-0$) line toward DR21(OH) that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be $sim$10 mG. Together with our detected $zB_{text{los}} = 53.5$ Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor $z$ is $sim$5 Hz mG$^{-1}$. Such small values of $z$ would not be a surprise, as the methanol molecule is non paramagnetic, like H$_2$O. Empirical attempts to determine $z$, as demonstrated, are important because currently there are no laboratory measurements or theoretically calculated values of $z$ for the 44 GHz methanol transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.
W75N is a star-forming region containing various ultracompact HII regions and OH, water, and methanol maser emission. Our VLBA map shows that the OH masers are located in a thin disk rotating around an O-star which is the exciting star of the ultracompact HII region VLA1. A separate set of maser spots is connected with the ultracompact HII region VLA2. The radial velocity of OH maser spots varies across the disk from 3.7 km/s to 10.9 km/s. The diameter of the disk is 4000 A.U. All maser spots are strongly polarized. This are the first OH masers showing nearly 100 per cent linear polarization in several spots. Two maser spots seem to be Zeeman pairs corresponding to a magnetic field of 5.2 mgauss and 7.7 mgauss, and in one case we tentatively found a Zeeman pair consisting of two linearly polarized components. The linearly polarized maser spots are shown to be sigma-components which is the case of the magnetic field being perpendicular to the line of sight. The direction of the magnetic field as determined from linearly polarized spots is perpendicular to the plane of the disk, although the galactic Faraday rotation may significantly affect this conclusion.
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا