No Arabic abstract
Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).
Our analysis of a VLBA 12-hour synthesis observation of the OH masers in a well-known star-forming region W49N has yielded valuable data that enables us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data consisting of detailed high angular-resolution images (with beam-width ~20 milli-arc-seconds) of several dozen OH maser sources or spots, at 1612, 1665 and 1667 MHz, reveal anisotropic scatter broadening, with typical sizes of a few tens of milli-arc-seconds and axial ratios between 1.5 to 3. Such anisotropies have been reported earlier by Desai, Gwinn & Diamond (1994) and interpreted as induced by the local magnetic field parallel to the Galactic plane. However, we find a) the apparent angular sizes on the average a factor of ~2.5 less than those reported by Desai et al. (1994), indicating significantly less scattering than inferred earlier, and b) a significant deviation in the average orientation of the scatter-broadened images (by ~10 degrees) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6 sigma) are apparent in the scatter broadened images for the two hands of circular polarization, even when apparent velocity separation is less than 0.1 km/s. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest the possible implications for the structure of magnetic fields within this star-forming region.
The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one pixel wide filament skeleton that is output by filament identification algorithms such as textsc{filfinder}. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the `Sobel-gradient method. The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used in constructing radial profiles for filament width fitting. The proposed method facilitates automation in analysis of filament skeletons, which is imperative in this era of `big data.
We present a large-scale view of the magnetic field in the central 2deg * 2deg region of our Galaxy. The polarization of point sources has been measured in the J, H, and Ks bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m telescope IRSF. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we obtain polarization originating from magnetically aligned dust grains in the central few-hundred pc of our Galaxy. We find that near the Galactic plane, the magnetic field is almost parallel to the Galactic plane (i.e., toroidal configuration) but at high Galactic latitudes (| b | > 0.4deg), the field is nearly perpendicular to the plane (i.e., poloidal configuration). This is the first detection of a smooth transition of the large-scale magnetic field configuration in this region.
Perturbative quantum field theory usually uses second quantisation and Feynman diagrams. The worldline formalism provides an alternative approach based on first quantised particle path integrals, similar in spirit to string perturbation theory. Here we review the history, main features and present applications of the formalism. Our emphasis is on recent developments such as the path integral representation of open fermion lines, the description of colour using auxiliary worldline fields, incorporation of higher spin, and extension of the formalism to non-commutative space.
We apply Dickes theory of superradiance introduced in 1954 to the methanol 6.7 GHz and water 22 GHz spectral lines, often detected in molecular clouds as signposts for the early stages of the star formation process. We suggest that superradiance, characterized by burst-like features taking place over a wide range of time-scales, may provide a natural explanation for the recent observations of periodic and seemingly alternating methanol and water maser flares in G107.298+5.639. Although these observations would be very difficult to explain within the context of maser theory, we show that these flares may result from simultaneously initiated 6.7-GHz methanol and 22-GHz water superradiant bursts operating on different time-scales, thus providing a natural mechanism for their observed durations and time ordering. The evidence of superradiance in this source further suggests the existence of entangled quantum mechanical states, involving a very large number of molecules, over distances up to a few kilometres in the interstellar medium.