Do you want to publish a course? Click here

Maser maps and magnetic field of OH 300.969+1.147

140   0   0.0 ( 0 )
 Added by James Caswell
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with tenth-arcsec spatial resolution, at velocity spacing 0.09 km/s, and in both senses of circular polarization, reveal 59 small diameter maser spots. The spots are scattered over 2-arcsec, coincident with a strong ultracompact HII region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from -1.1 to -4.7 mG, with a median value of -3.5 mG. Excited state masers of OH at 6035 MHz and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of -5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong HII regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.



rate research

Read More

Our analysis of a VLBA 12-hour synthesis observation of the OH masers in a well-known star-forming region W49N has yielded valuable data that enables us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data consisting of detailed high angular-resolution images (with beam-width ~20 milli-arc-seconds) of several dozen OH maser sources or spots, at 1612, 1665 and 1667 MHz, reveal anisotropic scatter broadening, with typical sizes of a few tens of milli-arc-seconds and axial ratios between 1.5 to 3. Such anisotropies have been reported earlier by Desai, Gwinn & Diamond (1994) and interpreted as induced by the local magnetic field parallel to the Galactic plane. However, we find a) the apparent angular sizes on the average a factor of ~2.5 less than those reported by Desai et al. (1994), indicating significantly less scattering than inferred earlier, and b) a significant deviation in the average orientation of the scatter-broadened images (by ~10 degrees) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6 sigma) are apparent in the scatter broadened images for the two hands of circular polarization, even when apparent velocity separation is less than 0.1 km/s. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest the possible implications for the structure of magnetic fields within this star-forming region.
231 - A.Bartkiewicz 2005
We present the results of MERLIN polarization mapping of OH masers at 1665 and 1667 MHz towards the Cepheus A star-forming region. The maser emission is spread over a region of 6 arcsec by 10 arcsec, twice the extent previously detected. In contrast to the 22 GHz water masers, the OH masers associated with H II regions show neither clear velocity gradients nor regular structures. We identified ten Zeeman pairs which imply a magnetic field strength along the line-of-sight from -17.3 to +12.7 mG. The magnetic field is organised on the arcsecond scale, pointing towards us in the west and away from us in the east side. The linearly polarized components, detected for the first time, show regularities in the polarization position angles depending on their position. The electric vectors of OH masers observed towards the outer parts of H II regions are consistent with the interstellar magnetic field orientation, while those seen towards the centres of H II regions are parallel to the radio-jets. A Zeeman quartet inside a southern H II region has now been monitored for 25 years; we confirm that the magnetic field decays monotonically over that period.
We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centres previously identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) pilot region, between Galactic longitudes of $334^{circ}$ and $344^{circ}$ and Galactic latitudes of $-2^{circ}$ and $+2^{circ}$. Supplementing our data with data from the MAGMO (Mapping the Galactic Magnetic field through OH masers) survey, we find maser emission towards 175 of the 196 target fields. We conclude that about half of the 21 non-detections were due to intrinsic variability. Due to the superior sensitivity of the follow-up ATCA observations, and the ability to resolve nearby sources into separate sites, we have identified 215 OH maser sites towards the 175 fields with detections. Among these 215 OH maser sites, 111 are new detections. After comparing the positions of these 215 maser sites to the literature, we identify 122 (57 per cent) sites associated with evolved stars (one of which is a planetary nebula), 64 (30 per cent) with star formation, two sites with supernova remnants and 27 (13 per cent) of unknown origin. The infrared colors of evolved star sites with symmetric maser profiles tend to be redder than those of evolved star sites with asymmetric maser profiles, which may indicate that symmetric sources are generally at an earlier evolutionary stage.
We present high spatial resolution observations of ground-state OH masers, achieved using the Australia Telescope Compact Array (ATCA). These observations were conducted towards 171 pointing centres, where OH maser candidates were identified previously in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) towards the Galactic Center region, between Galactic longitudes of $355^{circ}$ and $5^{circ}$ and Galactic latitudes of $-2^{circ}$ and $+2^{circ}$. We detect maser emission towards 162 target fields and suggest that 6 out of 9 non-detections are due to intrinsic variability. Due to the superior spatial resolution of the follow-up ATCA observations, we have identified 356 OH maser sites in the 162 of the target fields with maser detections. Almost half (161 of 356) of these maser sites have been detected for the first time in these observations. After comparing the positions of these 356 maser sites to the literature, we find that 269 (76%) sites are associated with evolved stars (two of which are planetary nebulae), 31 (9%) are associated with star formation, four are associated with supernova remnants and we were unable to determine the origin of the remaining 52 (15%) sites. Unlike the pilot region (citealt{Qie2016a}), the infrared colors of evolved star sites with symmetric maser profiles in the 1612 MHz transition do not show obvious differences compared with those of evolved star sites with asymmetric maser profiles.
We present a method for determining directions of magnetic field vectors in a spiral galaxy using two synchrotron polarization maps, an optical image, and a velocity field. The orientation of the transverse magnetic field is determined with a synchrotron polarization map of higher frequency band and the $180^circ$-ambiguity is solved by using sign of the Rotation Measure (RM) after determining geometrical orientation of a disk based on a assumption of trailing spiral arms. The advantage of this method is that direction of magnetic vector for each line of sight through the galaxy can be inexpensively determined with easily available data and with simple assumptions. We applied this method to three nearby spiral galaxies using archival data obtained with the Very Large Array (VLA) to demonstrate how it works. The three galaxies have both clockwise and counter-clockwise magnetic fields, which implies that all three galaxies are not classified in simple Axis-Symmetric type but types of higher modes and that magnetic reversals commonly exist.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا