Do you want to publish a course? Click here

Modeling interacting dynamic networks: I. Preferred degree networks and their characteristics

123   0   0.0 ( 0 )
 Added by Wenjia Liu
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a simple model of dynamic networks, characterized by a set preferred degree, $kappa$. Each node with degree $k$ attempts to maintain its $kappa$ and will add (cut) a link with probability $w(k;kappa)$ ($1-w(k;kappa)$). As a starting point, we consider a homogeneous population, where each node has the same $kappa$, and examine several forms of $w(k;kappa)$, inspired by Fermi-Dirac functions. Using Monte Carlo simulations, we find the degree distribution in steady state. In contrast to the well-known ErdH{o}s-R{e}nyi network, our degree distribution is not a Poisson distribution; yet its behavior can be understood by an approximate theory. Next, we introduce a second preferred degree network and couple it to the first by establishing a controllable fraction of inter-group links. For this model, we find both understandable and puzzling features. Generalizing the prediction for the homogeneous population, we are able to explain the total degree distributions well, but not the intra- or inter-group degree distributions. When monitoring the total number of inter-group links, $X$, we find very surprising behavior. $X$ explores almost the full range between its maximum and minimum allowed values, resulting in a flat steady-state distribution, reminiscent of a simple random walk confined between two walls. Both simulation results and analytic approaches will be discussed.



rate research

Read More

135 - Wenjia Liu , B. Schmittmann , 2014
In a recent work cite{LiuJoladSchZia13}, we introduced dynamic networks with preferred degrees and presented simulation and analytic studies of a single, homogeneous system as well as two interacting networks. Here, we extend these studies to a wider range of parameter space, in a more systematic fashion. Though the interaction we introduced seems simple and intuitive, it produced dramatically different behavior in the single- and two-network systems. Specifically, partitioning the single network into two identical sectors, we find the cross-link distribution to be a sharply peaked Gaussian. In stark contrast, we find a very broad and flat plateau in the case of two interacting identical networks. A sound understanding of this phenomenon remains elusive. Exploring more asymmetric interacting networks, we discover a kind of `universal behavior for systems in which the `introverts (nodes with smaller preferred degree) are far outnumbered. Remarkably, an approximation scheme for their degree distribution can be formulated, leading to very successful predictions.
We investigate the long-time properties of a dynamic, out-of-equilibrium, network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents opinions are fixed, they have a preferred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, which is a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we study in detail how the sizes of the communities and the degree of homophily/heterophily affects the network structure. In particular, we show that when the network is subject to enough heterophily, an overwhelming transition occurs: individuals of the smaller community are overwhelmed by links from agents of the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by obtaining the networks total and joint degree distributions, as well as the fraction of links across both communities and that of agents having less edges than the preferred degree. We use our mean-field theory to discuss the networks polarization when the group sizes and level of homophily vary.
In citation networks, the activity of papers usually decreases with age and dormant papers may be discovered and become fashionable again. To model this phenomenon, a competition mechanism is suggested which incorporates two factors: vigorousness and dormancy. Based on this idea, a citation network model is proposed, in which a node has two discrete stage: vigorous and dormant. Vigorous nodes can be deactivated and dormant nodes may be activated and become vigorous. The evolution of the network couples addition of new nodes and state transitions of old ones. Both analytical calculation and numerical simulation show that the degree distribution of nodes in generated networks displays a good right-skewed behavior. Particularly, scale-free networks are obtained as the deactivated vertex is target selected and exponential networks are realized for the random-selected case. Moreover, the measurement of four real-world citation networks achieves a good agreement with the stochastic model.
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address various notions of the network robustness relevant to multiplex networks such as the resilience of ordinary- and mutual connectivity under random or targeted node removals as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally-correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anti-correlated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.
Various real-life networks exhibit degree correlations and heterogeneous structure, with the latter being characterized by power-law degree distribution $P(k)sim k^{-gamma}$, where the degree exponent $gamma$ describes the extent of heterogeneity. In this paper, we study analytically the average path length (APL) of and random walks (RWs) on a family of deterministic networks, recursive scale-free trees (RSFTs), with negative degree correlations and various $gamma in (2,1+frac{ln 3}{ln 2}]$, with an aim to explore the impacts of structure heterogeneity on APL and RWs. We show that the degree exponent $gamma$ has no effect on APL $d$ of RSFTs: In the full range of $gamma$, $d$ behaves as a logarithmic scaling with the number of network nodes $N$ (i.e. $d sim ln N$), which is in sharp contrast to the well-known double logarithmic scaling ($d sim ln ln N$) previously obtained for uncorrelated scale-free networks with $2 leq gamma <3$. In addition, we present that some scaling efficiency exponents of random walks are reliant on degree exponent $gamma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا