No Arabic abstract
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang-Mills theory. At first step, we consider the $SO(n)$ and $SO(n-1,1)$ semisimple gauge groups. We obtain the analytic quartic quasitopological Yang-Mills black hole solutions. Real solutions are only accessible for the positive value of the redefined quartic quasitopological gravity coefficient, $mu_{4}$. These solutions have a finite value and an essential singularity at the origin, $r=0$ for space dimension higher than $8$. We also probe the thermodynamic and critical behavior of the quasitopological Yang-Mills black hole. The obtained solutions may be thermally stable only in the canonical ensemble. They may also show a first order phase transition from a small to a large black hole. In the second step, we obtain the pure quasitopological Yang-Mills black hole solutions. For the positive cosmological constant and the space dimensions greater than eight, the pure quasitopological Yang-Mills solutions have the ability to produce both the asymptotically AdS and dS black holes for respectively the negative and positive constant curvatures, $k=-1$ and $k=+1$. This is unlike the quasitopological Yang-Mills theory which can lead to just the asymptotically dS solutions for $Lambda>0$. The pure quasitopological Yang-Mills black hole is not thermally stable.
We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total change of transverse momentum of a charge is reviewed. Gauge fixing leads to a determination of a gauge transformation at infinity. An example of Yang-Mills memory then is obtained by reinterpreting known results on interactions of a quark and a large high energy nucleus in the theory of Color Glass Condensate. The memory signal is again a kick in transverse momentum, but it is only obtained in quantum theory after fixing the gauge, after summing over an ensemble of classical processes.
We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy construction known from quantum scattering amplitudes is then applied to the Feynman integrands, yielding the prediction for the classical effective action of point masses in dilaton gravity. We check the validity of the result by independently constructing the effective action in dilaton gravity employing field redefinitions and gauge choices that greatly simplify the perturbative construction. Complete agreement is found at next-to-leading order. Finally, upon performing the post-Newtonian expansion of our result, we find agreement with the corresponding action of scalar-tensor theories known from the literature. Our results represent a proof of concept for the classical double-copy construction of the gravitational effective action and provides another application of a BCJ-like double copy beyond scattering amplitudes.
We consider `twin supergravities - pairs of supergravities with $mathcal{N}_+$ and $mathcal{N}_-$ supersymmetries, $mathcal{N}_+>mathcal{N}_-$, with identical bosonic sectors - in the context of tensoring super Yang-Mills multiplets. It is demonstrated that the pairs of twin supergravity theories are related through their left and right super Yang-Mills factors. This procedure generates new theories from old. In particular, the matter coupled $mathcal{N}_-$ twins in $D=3,5,6$ and the $mathcal{N}_-=1$ twins in $D=4$ have not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing list of double-copy constructible theories. The use of fundamental matter multiplets in the double-copy construction leads us to introduce a bi-fundamental scalar that couples to the well-known bi-adjoint scalar field. It is also shown that certain matter coupled supergravities admit more than one factorisation into left and right super Yang-Mills-matter theories.
We discuss how D=5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2,0) theory in six dimensions. It is known that the compactification of (2,0) theory on a circle leads to D=5 MSYM. A variety of arguments suggest that the relation can be reversed, and that all of the degrees of freedom of (2,0) theory are already present in D=5 MSYM. If so, this relation should have consequences for D=5 SYM perturbation theory. We explore whether it might imply all orders finiteness, or else an unusual relation between the cutoff and the gauge coupling. S-duality of the reduction to D=4 may provide nonperturbative constraints or tests of these options.