Do you want to publish a course? Click here

On D=5 super Yang-Mills theory and (2,0) theory

300   0   0.0 ( 0 )
 Added by Michael R. Douglas
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We discuss how D=5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2,0) theory in six dimensions. It is known that the compactification of (2,0) theory on a circle leads to D=5 MSYM. A variety of arguments suggest that the relation can be reversed, and that all of the degrees of freedom of (2,0) theory are already present in D=5 MSYM. If so, this relation should have consequences for D=5 SYM perturbation theory. We explore whether it might imply all orders finiteness, or else an unusual relation between the cutoff and the gauge coupling. S-duality of the reduction to D=4 may provide nonperturbative constraints or tests of these options.



rate research

Read More

The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large N_c) maximally supersymmetric Yang-Mills theory in D = 5, which occurs at six loops. We show that the coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an approximate exponential formula based on the coefficients of the divergences through five loops. This formula predicts the approximate values of the ultraviolet divergence at loop orders L > 6 in the critical dimension D = 4 + 6/L. To obtain the six-loop divergence we first construct the planar six-loop four-point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of vacuum integrals, which are obtained by expanding the integrand in the external momenta. The vacuum integrals are integrated via sector decomposition, using a modified version of the FIESTA program.
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of restricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.
68 - Peter Austing 2001
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
The $alpha^2$ deformation of D=10 SYM is the natural generalisation of the $F^4$ term in the abelian Born-Infeld theory. It is shown that this deformation can be extended to $alpha^4$ in a way which is consistent with supersymmetry. The latter requires the presence of higher-derivative and commutator terms as well as the symmetrised trace of the Born-Infeld $alpha^4$ term.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا