No Arabic abstract
We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy construction known from quantum scattering amplitudes is then applied to the Feynman integrands, yielding the prediction for the classical effective action of point masses in dilaton gravity. We check the validity of the result by independently constructing the effective action in dilaton gravity employing field redefinitions and gauge choices that greatly simplify the perturbative construction. Complete agreement is found at next-to-leading order. Finally, upon performing the post-Newtonian expansion of our result, we find agreement with the corresponding action of scalar-tensor theories known from the literature. Our results represent a proof of concept for the classical double-copy construction of the gravitational effective action and provides another application of a BCJ-like double copy beyond scattering amplitudes.
We demonstrate that a recently proposed classical double copy procedure to construct the effective action of two massive particles in dilaton-gravity from the analogous problem of two color charged particles in Yang-Mills gauge theory fails at next-to-next-to-leading orders in the post-Minkowskian (3PM) or post-Newtonian (2PN) expansions.
We show that double field theory naturally arises from the color-kinematic double copy of Yang-Mills theory. A precise double copy prescription for the Yang-Mills action at quadratic and cubic order is provided that yields the double field theory action in which the duality invariant dilaton has been integrated out. More precisely, at quadratic order this yields the gauge invariant double field theory, while at cubic order it yields the cubic double field theory action subject to a gauge condition that originates from Siegel gauge in string field theory.
We formulate a version of the double copy for classical fields in curved spacetimes. We provide a correspondence between perturbative solutions to the bi-adjoint scalar equations and those of the Yang-Mills equations in position space. At the linear level, we show that there exists a map between these solutions for maximally symmetric spacetime backgrounds, that provides every Yang-Mills solution by the action of an appropriate differential operator on a bi-adjoint scalar solution. Given the existence of a linearized map, we show that it is possible to cast the solutions of the Yang-Mills equations at arbitrary perturbation order in terms of the corresponding bi-adjoint scalar solutions. This all-order map is reminiscent of the flat space BCJ double copy, and works for any curved spacetime where the perturbative expansion holds. We show that these results have the right flat space limit, and that the correspondence is agnostic to the choice of gauge.
We construct the off-shell recursion for gravity and the graviton current for the perturbative double field theory (DFT). We first formulate the perturbative DFT, which is equivalent but simpler to perturbative general relativity, to all-orders in fluctuations of generalised metric. The perturbative action and equations of motion (EoM) are derived to arbitrary order for pure gravity case. We then derive the graviton off-shell recursion, the gravity counterpart of the Berends-Giele recursion in Yang-Mills theory, through the so-called perturbiner method using the EoM of the perturbative DFT. We solve the recursion iteratively and obtain the graviton off-shell currents explicitly. We then discuss the classical double copy for the off-shell currents. We present the current KLT relation for gravity by extending the result proposed by Mizera and Skrzypek for the non-gravitational effective field theories. The relation represents graviton currents by squaring gluon currents with the KLT kernel up to gauge transformation and regular terms that do not have any pole. Finally we discuss the off-shell conservation of currents for nonlinear gauge choices.
We extend the perturbative classical double copy to the analysis of bound systems. We first obtain the leading order perturbative gluon radiation field sourced by a system of interacting color charges in arbitrary time dependent orbits, and test its validity by taking relativistic bremsstrahlung and non-relativistic bound state limits. By generalizing the color to kinematic replacement rules recently used in the context of classical bremsstrahlung, we map the gluon emission amplitude to the radiation fields of dilaton gravity sourced by interacting particles in generic (self-consistent) orbits. As an application, we reproduce the leading post-Newtonian radiation fields and energy flux for point masses in non-relativistic orbits from the double copy of gauge theory.