Do you want to publish a course? Click here

Measurement of geo-neutrinos from 1353 days of Borexino

152   0   0.0 ( 0 )
 Added by Livia Ludhova
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after all selection cuts and background subtraction, we detected (14.3 $pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $pm$ 12.0) TNU with just a 6 $times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{mathrm{Th}}$ = (10.6 $pm$ 12.7) TNU and $S_mathrm{U}$ = (26.5 $pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.



rate research

Read More

We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5pm0.3)times10^{31}$ proton$times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 times 10^{-9}$ (5.9$sigma$). A geo-neutrino signal from the mantle is obtained at 98% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
Borexino collaboration reported about first measurement of solar CNO-$ u$ interaction rate in Borexino detector. This result is consistent with Hydridic Earth model prediction about the contribution of $^{40}$K geo-antineutrino interactions in single Borexino events. The potassium abundance in the Earth in the range $1 div 1.5$% of the Earth mass could give the observed enhancement of counting rate above expected CNO-$ u$ counting rate. The Earth intrinsic heat flux must be in the range $200 div 300$ TW for this potassium abundance. This value of the heat flux can explain the ocean heating observed by the project ARGO. We consider that Hydridic Earth model actually corresponds better to CNO-$ u$ Borexino results than Silicate Earth model.
We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($bar{ u}_e$) are detected in an organic liquid scintillator through the inverse $beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $bar{ u}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $bar{ u}_e$ in the solar neutrino flux is also presented: the presence of $bar{ u}_e$ would be a manifestation of a non-zero anomalous magnetic moment of the neutrino, making possible its conversion to antineutrinos in the strong magnetic field of the Sun. We obtain a limit for a solar $bar{ u}_e$ flux of 384 cm$^{-2}$s$^{-1}$ (90% C.L.), assuming an undistorted solar $^{8}$B neutrinos energy spectrum, that corresponds to a transition probability $p_{ u_e rightarrow bar u_{e}}<$ 7.2$times$10$^{-5}$ (90% C.L.) for E$_{bar { u}_e}$ $>$ 1.8 MeV. At lower energies, by investigating the spectral shape of elastic scattering events, we obtain a new limit on solar $^{7}$Be-$ u_e$ conversion into $bar{ u}_e$ of $p_{ u_e rightarrow bar u_{e}}<$ 0.14 (90% C.L.) at 0.862 keV. Last, we investigate solar flares as possible neutrino sources and obtain the strongest up-to-date limits on the fluence of neutrinos of all flavor neutrino below 3-7 ,MeV. Assuming the neutrino flux to be proportional to the flares intensity, we exclude an intense solar flare as the cause of the observed excess of events in run 117 of the Cl-Ar Homestake experiment.
Liquid scintillator detectors play a central role in the detection of neutrinos from various sources. In particular, it is the only technique used so far for the precision spectroscopy of sub-MeV solar neutrinos, as demonstrated by the Borexino experiment at the Gran Sasso National Laboratory in Italy. The benefit of a high light yield, and thus a low energy threshold and a good energy resolution, comes at the cost of the directional information featured by water Cherenkov detectors, measuring $^8$B solar neutrinos above a few MeV. In this paper we provide the first directionality measurement of sub-MeV solar neutrinos which exploits the correlation between the first few detected photons in each event and the known position of the Sun for each event. This is also the first signature of directionality in neutrinos elastically scattering off electrons in a liquid scintillator target. This measurement exploits the sub-dominant, fast Cherenkov light emission that precedes the dominant yet slower scintillation light signal. Through this measurement, we have also been able to extract the rate of $^{7}$Be solar neutrinos in Borexino. The demonstration of directional sensitivity in a traditional liquid scintillator target paves the way for the possible exploitation of the Cherenkov light signal in future kton-scale experiments using liquid scintillator targets. Directionality is important for background suppression as well as the disentanglement of signals from various sources.
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $overline{ u}_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $overline{ u}_{e}$ rates and energy spectra among detectors yields $sin^{2}2theta_{13} = 0.0856pm 0.0029$ and $Delta m^2_{32}=(2.471^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the normal hierarchy, and $Delta m^2_{32}=-(2.575^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the inverted hierarchy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا