No Arabic abstract
Liquid scintillator detectors play a central role in the detection of neutrinos from various sources. In particular, it is the only technique used so far for the precision spectroscopy of sub-MeV solar neutrinos, as demonstrated by the Borexino experiment at the Gran Sasso National Laboratory in Italy. The benefit of a high light yield, and thus a low energy threshold and a good energy resolution, comes at the cost of the directional information featured by water Cherenkov detectors, measuring $^8$B solar neutrinos above a few MeV. In this paper we provide the first directionality measurement of sub-MeV solar neutrinos which exploits the correlation between the first few detected photons in each event and the known position of the Sun for each event. This is also the first signature of directionality in neutrinos elastically scattering off electrons in a liquid scintillator target. This measurement exploits the sub-dominant, fast Cherenkov light emission that precedes the dominant yet slower scintillation light signal. Through this measurement, we have also been able to extract the rate of $^{7}$Be solar neutrinos in Borexino. The demonstration of directional sensitivity in a traditional liquid scintillator target paves the way for the possible exploitation of the Cherenkov light signal in future kton-scale experiments using liquid scintillator targets. Directionality is important for background suppression as well as the disentanglement of signals from various sources.
Borexino collaboration reported about first measurement of solar CNO-$ u$ interaction rate in Borexino detector. This result is consistent with Hydridic Earth model prediction about the contribution of $^{40}$K geo-antineutrino interactions in single Borexino events. The potassium abundance in the Earth in the range $1 div 1.5$% of the Earth mass could give the observed enhancement of counting rate above expected CNO-$ u$ counting rate. The Earth intrinsic heat flux must be in the range $200 div 300$ TW for this potassium abundance. This value of the heat flux can explain the ocean heating observed by the project ARGO. We consider that Hydridic Earth model actually corresponds better to CNO-$ u$ Borexino results than Silicate Earth model.
We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after all selection cuts and background subtraction, we detected (14.3 $pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $pm$ 12.0) TNU with just a 6 $times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{mathrm{Th}}$ = (10.6 $pm$ 12.7) TNU and $S_mathrm{U}$ = (26.5 $pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.
MeV-scale energy depositions by low-energy photons produced in neutrino-argon interactions have been identified and reconstructed in ArgoNeuT liquid argon time projection chamber (LArTPC) data. ArgoNeuT data collected on the NuMI beam at Fermilab were analyzed to select isolated low-energy depositions in the TPC volume. The total number, reconstructed energies and positions of these depositions have been compared to those from simulations of neutrino-argon interactions using the FLUKA Monte Carlo generator. Measured features are consistent with energy depositions from photons produced by de-excitation of the neutrinos target nucleus and by inelastic scattering of primary neutrons produced by neutrino-argon interactions. This study represents a successful reconstruction of physics at the MeV-scale in a LArTPC, a capability of crucial importance for detection and reconstruction of supernova and solar neutrino interactions in future large LArTPCs.
We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.
BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiments goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.