Do you want to publish a course? Click here

Spectroscopy of geo-neutrinos from 2056 days of Borexino data

151   0   0.0 ( 0 )
 Added by Aldo Ianni
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5pm0.3)times10^{31}$ proton$times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 times 10^{-9}$ (5.9$sigma$). A geo-neutrino signal from the mantle is obtained at 98% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.



rate research

Read More

152 - G. Bellini , J. Benziger , D. Bick 2013
We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after all selection cuts and background subtraction, we detected (14.3 $pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $pm$ 12.0) TNU with just a 6 $times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{mathrm{Th}}$ = (10.6 $pm$ 12.7) TNU and $S_mathrm{U}$ = (26.5 $pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.
Borexino collaboration reported about first measurement of solar CNO-$ u$ interaction rate in Borexino detector. This result is consistent with Hydridic Earth model prediction about the contribution of $^{40}$K geo-antineutrino interactions in single Borexino events. The potassium abundance in the Earth in the range $1 div 1.5$% of the Earth mass could give the observed enhancement of counting rate above expected CNO-$ u$ counting rate. The Earth intrinsic heat flux must be in the range $200 div 300$ TW for this potassium abundance. This value of the heat flux can explain the ocean heating observed by the project ARGO. We consider that Hydridic Earth model actually corresponds better to CNO-$ u$ Borexino results than Silicate Earth model.
We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($bar{ u}_e$) are detected in an organic liquid scintillator through the inverse $beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $bar{ u}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $bar{ u}_e$ in the solar neutrino flux is also presented: the presence of $bar{ u}_e$ would be a manifestation of a non-zero anomalous magnetic moment of the neutrino, making possible its conversion to antineutrinos in the strong magnetic field of the Sun. We obtain a limit for a solar $bar{ u}_e$ flux of 384 cm$^{-2}$s$^{-1}$ (90% C.L.), assuming an undistorted solar $^{8}$B neutrinos energy spectrum, that corresponds to a transition probability $p_{ u_e rightarrow bar u_{e}}<$ 7.2$times$10$^{-5}$ (90% C.L.) for E$_{bar { u}_e}$ $>$ 1.8 MeV. At lower energies, by investigating the spectral shape of elastic scattering events, we obtain a new limit on solar $^{7}$Be-$ u_e$ conversion into $bar{ u}_e$ of $p_{ u_e rightarrow bar u_{e}}<$ 0.14 (90% C.L.) at 0.862 keV. Last, we investigate solar flares as possible neutrino sources and obtain the strongest up-to-date limits on the fluence of neutrinos of all flavor neutrino below 3-7 ,MeV. Assuming the neutrino flux to be proportional to the flares intensity, we exclude an intense solar flare as the cause of the observed excess of events in run 117 of the Cl-Ar Homestake experiment.
Borexino has been running since May 2007 at the LNGS with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the 7Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO neutrinos. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the 7 Be neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of phase-I results in the context of the neutrino oscillation physics and solar models are presented.
The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا