Do you want to publish a course? Click here

The Cluster and Field Galaxy AGN Fraction at z = 1 to 1.5: Evidence for a Reversal of the Local Anticorrelation Between Environment and AGN Fraction

324   0   0.0 ( 0 )
 Added by Paul Martini
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.



rate research

Read More

179 - C. Lopez-Sanjuan 2009
Aims: We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries, and address three main sources of systematic errors: (i) we explicitly apply morphological K-corrections, (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift, and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m(z) = f_m(0) (1+z)^m, we find that m = 1.8 +/- 0.5 for M_B <= -20 galaxies, while m = 5.4 +/- 0.4 for M_star >= 10^10 M_Sun galaxies. When we translate our merger fractions to merger rates (R_m), their evolution, parameterized as R_m(z) = R_m(0) (1+z)^n, is quite similar in both cases: n = 3.3 +/- 0.8 and n = 3.5 +/- 0.4, respectively. Conclusions: Our results imply that only ~8% of todays M_star >= 10^10 M_Sun galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~21% of this mass galaxies at z ~ 1 have undergone one of these mergers since z ~ 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_star >= 10^10 M_Sun galaxies since z ~ 1, but may be an important process at z > 1.
We aim to study the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) in massive galaxy clusters. We explore the use of different AGN detection techniques with the goal of selecting AGN across a broad range of luminosities, AGN/host galaxy flux ratios, and obscuration levels. From a sample of 12 galaxy clusters at redshifts 0.5 < z < 0.9, we identify AGN candidates using optical variability from multi-epoch HST imaging, X-ray point sources in Chandra images, and mid-IR SED power-law fits through the Spitzer IRAC channels. We find 178 optical variables, 74 X-ray point sources, and 64 IR power law sources, resulting in an average of ~25 AGN per cluster. We find no significant difference between the fraction of AGN among galaxies in clusters and the percentage of similarly-detected AGN in field galaxy studies (~2.5%). This result provides evidence that galaxies are still able to fuel accretion onto their supermassive black holes, even in dense environments. We also investigate correlations between the percentage of AGN and cluster physical properties such as mass, X-ray luminosity, size, morphology class and redshift. We find no significant correlations among cluster properties and the percentage of AGN detected.
We present evidence for a strong relationship between galaxy size and environment for the quiescent population in the redshift range 1 < z < 2. Environments were measured using projected galaxy overdensities on a scale of 400 kpc, as determined from ~ 96,000 K-band selected galaxies from the UKIDSS Ultra Deep Survey (UDS). Sizes were determined from ground-based K-band imaging, calibrated using space-based CANDELS HST observations in the centre of the UDS field, with photometric redshifts and stellar masses derived from 11-band photometric fitting. From the resulting size-mass relation, we confirm that quiescent galaxies at a given stellar mass were typically ~ 50 % smaller at z ~ 1.4 compared to the present day. At a given epoch, however, we find that passive galaxies in denser environments are on average significantly larger at a given stellar mass. The most massive quiescent galaxies (M_stellar > 2 x 10^11 M_sun) at z > 1 are typically 50 % larger in the highest density environments compared to those in the lowest density environments. Using Monte Carlo simulations, we reject the null hypothesis that the size-mass relation is independent of environment at a significance > 4.8 sigma for the redshift range 1 < z < 2. In contrast, the evidence for a relationship between size and environment is much weaker for star-forming galaxies.
367 - Chris Simpson 2005
Using a complete, magnitude-limited sample of active galaxies from the Sloan Digital Sky Survey (SDSS) we show that the fraction of broad-line (Type 1) active galactic nuclei increases with luminosity of the isotropically-emitted [O III] narrow emission line. Our results are quantitatively in agreement with, and far less uncertain than, similar trends found from studies of X-ray and radio-selected active galaxies. While the correlation between broad-line fraction and luminosity is qualitatively consistent with the receding torus model, its slope is shallower and we therefore propose a modification to this model where the height of the torus increases slowly with AGN luminosity. We demonstrate that the faint-end slope of the AGN luminosity function steepens significantly when a correction for `missing Type 2 objects is made and that this can substantially affect the overall AGN luminosity density extrapolated from samples of more luminous objects.
We measure the dependence of the AGN fraction on local environment at z~1, using spectroscopic data taken from the DEEP2 Galaxy Redshift Survey, and Chandra X-ray data from the All-Wavelength Extended Groth Strip International Survey (AEGIS). To provide a clean sample of AGN we restrict our analysis to the red sequence population; this also reduces additional colour-environment correlations. We find evidence that high redshift LINERs in DEEP2 tend to favour higher density environments relative to the red population from which they are drawn. In contrast, Seyferts and X-ray selected AGN at z~1 show little (or no) environmental dependencies within the same underlying population. We compare these results with a sample of local AGN drawn from the SDSS. Contrary to the high redshift behaviour, we find that both LINERs and Seyferts in the SDSS show a slowly declining red sequence AGN fraction towards high density environments. Interestingly, at z~1 red sequence Seyferts and LINERs are approximately equally abundant. By z~0, however, the red Seyfert population has declined relative to the LINER population by over a factor of 7. We speculate on possible interpretations of our results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا