Do you want to publish a course? Click here

A Multi-wavelength Survey of AGN in Massive Clusters: AGN Detection and Cluster AGN Fraction

221   0   0.0 ( 0 )
 Added by Alison Klesman
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to study the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) in massive galaxy clusters. We explore the use of different AGN detection techniques with the goal of selecting AGN across a broad range of luminosities, AGN/host galaxy flux ratios, and obscuration levels. From a sample of 12 galaxy clusters at redshifts 0.5 < z < 0.9, we identify AGN candidates using optical variability from multi-epoch HST imaging, X-ray point sources in Chandra images, and mid-IR SED power-law fits through the Spitzer IRAC channels. We find 178 optical variables, 74 X-ray point sources, and 64 IR power law sources, resulting in an average of ~25 AGN per cluster. We find no significant difference between the fraction of AGN among galaxies in clusters and the percentage of similarly-detected AGN in field galaxy studies (~2.5%). This result provides evidence that galaxies are still able to fuel accretion onto their supermassive black holes, even in dense environments. We also investigate correlations between the percentage of AGN and cluster physical properties such as mass, X-ray luminosity, size, morphology class and redshift. We find no significant correlations among cluster properties and the percentage of AGN detected.



rate research

Read More

We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi- wavelength surveys covering regions centered on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. AGN host galaxies also show a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the green valley between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star-formation in the hosts. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts. This may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy than the intracluster medium and/or local galaxy environment.
238 - Xinyu Dai 2015
The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift XRT serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4e-15 erg/s/cm^2) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wise mid-infrared (MIR) colors to classify the sources. For AGN we can roughly separate the point sources into MIR-red and MIR-blue AGN, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher redshift (z > 0.5) X-ray-selected clusters.
We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive ($gtrsim10^{14},rm{M_{odot}}$) galaxy clusters at $1<z<1.75$. Using new, deep $Herschel$/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at $zgtrsim1.4$ is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores ($r<0.5,$Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by $zsim1$. Enhanced SFRs are found in lower mass ($10.1< log rm{M_{star}}/rm{M_{odot}}<10.8$) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from $z=0.5-2$, finding an excess AGN fraction at $zgtrsim1$, suggesting environmental triggering of AGN during this epoch. We argue that our results $-$ a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN $-$ are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.
The largest Key Science Program of the RadioAstron space VLBI mission is a survey of active galactic nuclei (AGN). The main goal of the survey is to measure and study the brightness of AGN cores in order to better understand the physics of their emission while taking interstellar scattering into consideration. In this paper we present detection statistics for observations on ground-space baselines of a complete sample of radio-strong AGN at the wavelengths of 18, 6, and 1.3 cm. Two-thirds of them are indeed detected by RadioAstron and are found to contain extremely compact, tens to hundreds of $mu$as structures within their cores.
We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS) which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected ($E>14$ keV) active galactic nuclei (AGN). We use the deviation from a linear broad H$alpha$-to-X-ray relationship as an estimate of the maximum optical obscuration towards the broad line region and compare the $A_{rm V}$ to the hydrogen column densities ($N_{rm H}$) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by $A_{rm V}$ towards the broad line region (BLR) are often orders of magnitude less than the columns measured towards the X-ray emitting region indicating a small scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1--1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting the broad line region itself is providing extra obscuration towards the X-ray corona. The fraction of X-ray absorbed Type 1 AGN remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable broad line region covering fraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا