Do you want to publish a course? Click here

Evidence for a correlation between the sizes of quiescent galaxies and local environment to z ~ 2

531   0   0.0 ( 0 )
 Added by Caterina Lani
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present evidence for a strong relationship between galaxy size and environment for the quiescent population in the redshift range 1 < z < 2. Environments were measured using projected galaxy overdensities on a scale of 400 kpc, as determined from ~ 96,000 K-band selected galaxies from the UKIDSS Ultra Deep Survey (UDS). Sizes were determined from ground-based K-band imaging, calibrated using space-based CANDELS HST observations in the centre of the UDS field, with photometric redshifts and stellar masses derived from 11-band photometric fitting. From the resulting size-mass relation, we confirm that quiescent galaxies at a given stellar mass were typically ~ 50 % smaller at z ~ 1.4 compared to the present day. At a given epoch, however, we find that passive galaxies in denser environments are on average significantly larger at a given stellar mass. The most massive quiescent galaxies (M_stellar > 2 x 10^11 M_sun) at z > 1 are typically 50 % larger in the highest density environments compared to those in the lowest density environments. Using Monte Carlo simulations, we reject the null hypothesis that the size-mass relation is independent of environment at a significance > 4.8 sigma for the redshift range 1 < z < 2. In contrast, the evidence for a relationship between size and environment is much weaker for star-forming galaxies.



rate research

Read More

We quantify the presence of Active Galactic nuclei (AGN) in a mass-complete (M_* >5e10 M_sun) sample of 123 star-forming and quiescent galaxies at 1.5 < z < 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41+/-7% of the galaxies are detected directly in X-rays, 22+/-5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGN (L_0.5-8keV > 3e42 ergs/s). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGN are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGN. Among the quiescent galaxies, the excess suggests that as many as 70-100% of these contain low- or high-luminosity AGN, while the corresponding fraction is lower among star-forming galaxies (43-65%). The ubiquitous presence of AGN in massive, quiescent z ~ 2 galaxies that we find provides observational support for the importance of AGN in impeding star formation during galaxy evolution.
The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.
168 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
We present new results from our search for z~7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust redshift identifications, one from its Lyalpha emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyalpha wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyalpha EW derived from the non detections in ultra-deep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z~7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Ly$alpha$ emission in z~7 Lyman break galaxies compared to z~6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
We investigate the build-up of galaxies at z~1 using maps of Halpha and stellar continuum emission for a sample of 57 galaxies with rest-frame Halpha equivalent widths >100 Angstroms in the 3D-HST grism survey. We find that the Halpha emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Halpha effective radius r_e(Halpha) is 4.2+-0.1 kpc but the sizes span a large range, from compact objects with r_e(Halpha) ~ 1.0 kpc to extended disks with r_e(Halpha) ~ 15 kpc. Comparing Halpha sizes to continuum sizes, we find <r_e(Halpha)/r_e(R)>=1.3+-0.1 for the full sample. That is, star formation, as traced by Halpha, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Halpha sizes, we derive star formation rate surface densities. We find that they range from ~0.05 Msun yr^{-1} kpc^{-2} for the largest galaxies to ~5 Msun yr^{-1} kpc^{-2} for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z~1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times < 500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z~1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا