Do you want to publish a course? Click here

Magnetic Avalanches in Molecular Magnets

128   0   0.0 ( 0 )
 Added by Myriam P. Sarachik
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The reversal of the magnetization of crystals of molecular magnets that have a large spin and high anisotropy barrier generally proceeds below the blocking temperature by quantum tunneling. This is manifested as a series of controlled steps in the hysteresis loops at resonant values of the magnetic field where energy levels on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of the entire crystal can occur instead by a process commonly referred to as a magnetic avalanche, where the molecular spins reverse along a deflagration front that travels through the sample at subsonic speed. In this chapter, we review experimental results obtained to date for magnetic deflagration in molecular nanomagnets.



rate research

Read More

135 - M. P. Sarachik , S. McHugh 2010
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the magnetic moment of such a crystal can also occur as an avalanche, where the spin reversal proceeds along a deflagration front that travels through the sample at subsonic speed. In this article we review experimental results that have been obtained for the ignition temperature and the speed of propagation of magnetic avalanches in molecular nanomagnets. Fits of the data with the theory of magnetic deflagration yield overall qualitative agreement. However, numerical discrepancies indicate that our understanding of these avalanches is incomplete.
Experimentally detected ultrafast spin-avalanches spreading in crystals of molecular (nano)magnets (Decelle et al., Phys. Rev. Lett. 102, 027203 (2009)), have been recently explained in terms of magnetic detonation (Modestov et al., Phys. Rev. Lett. 107, 207208 (2011)). Here magnetic detonation structure is investigated by taking into account transport processes of the crystals such as thermal conduction and volume viscosity. In contrast to the previously suggested model, the transport processes result in smooth profiles of the most important thermodynamical crystal parameters - such as temperature, density and pressure - all over the magnetic detonation front including the leading shock, which is one of the key regions of magnetic detonation. In the case of zero volume viscosity, thermal conduction leads to an isothermal discontinuity instead of the shock, for which temperature is continuous while density and pressure experience jump.
Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interaction leads to bosonic eigen-excitations with average spin ranging from zero to above $hbar$ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of spin $hbar$ magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin $pm hbar$ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The average spin greater than $hbar$ is accompanied by vacuum fluctuations and may be considered to be a weak form of frustration.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.
A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultra-dense magnetic memories. Here, we review recent progress in the field of skyrmionics, which is concerned with studies of tiny whirls of magnetic configurations for novel memory and logic applications, with a particular emphasis on antiskyrmions. Magnetic antiskyrmions represent analogs of skyrmions with opposite topological charge. Just like skyrmions, antiskyrmions can be stabilized by the Dzyaloshinskii-Moriya interaction, as has been demonstrated in a recent experiment. Here, we emphasize differences between skyrmions and antiskyrmions, e.g., in the context of the topological Hall effect, skyrmion Hall effect, as well as nucleation and stability. Recent progress suggests that anitskyrmions can be potentially useful for many device applications. Antiskyrmions offer advantages over skyrmions as they can be driven without the Hall-like motion, offer increased stability due to dipolar interactions, and can be realized above room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا