Do you want to publish a course? Click here

Magnetic Avalanches in Molecular Nanomagnets

120   0   0.0 ( 0 )
 Added by Myriam P. Sarachik
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the magnetic moment of such a crystal can also occur as an avalanche, where the spin reversal proceeds along a deflagration front that travels through the sample at subsonic speed. In this article we review experimental results that have been obtained for the ignition temperature and the speed of propagation of magnetic avalanches in molecular nanomagnets. Fits of the data with the theory of magnetic deflagration yield overall qualitative agreement. However, numerical discrepancies indicate that our understanding of these avalanches is incomplete.



rate research

Read More

115 - Myriam P. Sarachik 2013
The reversal of the magnetization of crystals of molecular magnets that have a large spin and high anisotropy barrier generally proceeds below the blocking temperature by quantum tunneling. This is manifested as a series of controlled steps in the hysteresis loops at resonant values of the magnetic field where energy levels on opposite sides of the barrier cross. An abrupt reversal of the magnetic moment of the entire crystal can occur instead by a process commonly referred to as a magnetic avalanche, where the molecular spins reverse along a deflagration front that travels through the sample at subsonic speed. In this chapter, we review experimental results obtained to date for magnetic deflagration in molecular nanomagnets.
We obtain a fundamental instability of the magnetization-switching fronts in super-paramagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion and thermonuclear su- pernovae, and the instability of doping fronts in organic semiconductors.
Anisotropy effects for spin avalanches in crystals of nanomagnets are studied theoretically with the external magnetic field applied at an arbitrary angle to the easy axis. Starting with the Hamiltonian for a single nanomagnet in the crystal, the two essential quantities characterizing spin avalanches are calculated: the activation energy and the Zeeman energy. The calculation is performed numerically for the wide range of angles and analytical formulas are derived within the limit of small angles. The anisotropic properties of a single nanomagnet lead to anisotropic behavior of the magnetic deflagration speed. Modifications of the magnetic deflagration speed are investigated for different angles between the external magnetic field and the easy axis of the crystals. Anisotropic properties of magnetic detonation are also studied, which concern, first of all, temperature behind the leading shock and the characteristic time of spin switching in the detonation.
Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N{e}el-vector-tunneling description of the spin dynamics.
We present a flexible and effective ab-initio scheme to build many-body models for molecular nanomagnets, and to calculate magnetic exchange couplings and zero-field splittings. It is based on using localized Foster-Boys orbitals as one-electron basis. We apply this scheme to three paradigmatic systems, the antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In all cases we identify the essential magnetic interactions and find excellent agreement with experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا