Do you want to publish a course? Click here

A scientific case for future X-ray Astronomy: Galaxy Clusters at high redshifts

326   0   0.0 ( 0 )
 Added by Paolo Tozzi
 Publication date 2013
  fields Physics
and research's language is English
 Authors Paolo Tozzi




Ask ChatGPT about the research

Clusters of galaxies at high redshift (z>1) are vitally important to understand the evolution of the large scale structure of the Universe, the processes shaping galaxy populations and the cycle of the cosmic baryons, and to constrain cosmological parameters. After 13 years of operation of the Chandra and XMM-Newton satellites, the discovery and characterization of distant X-ray clusters is proceeding at a slow pace, due to the low solid angle covered so far, and the time-expensive observations needed to physically characterize their intracluster medium (ICM). At present, we know that at z>1 many massive clusters are fully virialized, their ICM is already enriched with metals, strong cool cores are already in place, and significant star formation is ongoing in their most massive galaxies, at least at z>1.4. Clearly, the assembly of a large and well characterized sample of high-z X-ray clusters is a major goal for the future. We argue that the only means to achieve this is a survey-optimized X-ray mission capable of offering large solid angle, high sensitivity, good spectral coverage, low background and angular resolution as good as 5 arcsec.



rate research

Read More

83 - A. Celotti 2004
Most old distant radio galaxies should be extended X-ray sources due to inverse Compton scattering of Cosmic Microwave Background (CMB) photons. Such sources can be an important component in X-ray surveys for high redshift clusters, due to the increase with redshift of both the CMB energy density and the radio source number density. We estimate a lower limit to the space density of such sources and show that inverse Compton scattered emission may dominate above redshifts of one and X-ray luminosities of 10^44 erg/s, with a space density of radio galaxies > 10^-8 Mpc^-3. The X-ray sources may last longer than the radio emission and so need not be associated with what is seen to be a currently active radio galaxy.
93 - Stefania Amodeo 2016
Galaxy clusters are the most recent, gravitationally-bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the clusters halo, with systems at higher mass being less concentrated at given redshift and for any given mass, systems with lower concentration are found at higher redshifts. Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range $0.4<z<1.2$, selected to have no major mergers, to investigate the relation between the mass and the dark matter concentration, and the evolution of this relation with redshift. The sample in exam is the largest one investigated so far at $z>0.4$, and is well suited to provide the first constraint on the concentration--mass relation at $z>0.7$ from X-ray analysis. Under the assumptions that the distribution of the X-ray emitting gas is spherically symmetric and in hydrostatic equilibrium, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a NFW total mass distribution. The comparison with results from weak lensing analysis reveals a very good agreement both for masses and concentrations. Uncertainties are however too large to make any robust conclusion on the hydrostatic bias of these systems. The relation is well described by the form $c propto M^B (1+z)^C$, with $B=-0.50 pm 0.20$, $C=0.12 pm 0.61$ (at 68.3% confidence), it is slightly steeper than the one predicted by numerical simulations ($Bsim-0.1$) and does not show any evident redshift evolution. We obtain the first constraints on the properties of the concentration--mass relation at $z > 0.7$ from X-ray data, showing a reasonable good agreement with recent numerical predictions.
244 - Heng Yu , Paolo Tozzi (2 2011
The ubiquitous presence of the Fe line complex in the X-ray spectra of galaxy clusters offers the possibility of measuring their redshift without resorting to spectroscopic follow-up observations. In this paper we assess the accuracy with which the redshift of galaxy clusters can be recovered from an X-ray spectral analysis of Chandra archival data. This study indicates a strategy to build large surveys of clusters whose identification and redshift measurement are both based on X-ray data alone. We apply a blind search for K--shell and L--shell Fe line complex in X-ray cluster spectra using Chandra archival observations of galaxy clusters. The Fe line in the ICM spectra can be detected by simply analyzing the C-statistics variation $Delta C_{stat}$ as a function of the redshift parameter. We repeat the measurement under different conditions, and compare the X-ray derived redshift $z_X$ with the one obtained by means of optical spectroscopy $z_o$. We explore how a number of priors on metallicity and luminosity can be effectively used to reduce catastrophic errors. The $Delta C_{stat}$ provides the most efficient means for discarding wrong redshift measures and to estimate the actual error on $z_X$. We identify a simple and efficient procedure for optimally measuring the redshifts from the X-ray spectral analysis of clusters of galaxies. When this procedure is applied to mock catalogs extracted from high sensitivity, wide-area cluster surveys, such as those proposed with Wide Field X-ray Telescope (WFXT) mission, it is possible to obtain a complete samples of X-ray clusters with reliable redshift measurements, thus avoiding time-consuming optical spectroscopic observations. This methodology will make it possible to trace cosmic growth by studying the evolution of the cluster mass function directly using X-ray data.
We present the first public release of our Bayesian inference tool, Bayes-X, for the analysis of X-ray observations of galaxy clusters. We illustrate the use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as they would be observed by a Chandra-like X-ray observatory. In both the simulations and the analysis pipeline we assume that the dark matter density follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. We then perform four sets of analyses. By numerically exploring the joint probability distribution of the cluster parameters given simulated Chandra-like data, we show that the model and analysis technique can robustly return the simulated cluster input quantities, constrain the cluster physical parameters and reveal the degeneracies among the model parameters and cluster physical parameters. We then analyse Chandra data on the nearby cluster, A262, and derive the cluster physical profiles. To illustrate the performance of the Bayesian model selection, we also carried out analyses assuming an Einasto profile for the matter density and calculated the Bayes factor. The results of the model selection analyses for the simulated data favour the NFW model as expected. However, we find that the Einasto profile is preferred in the analysis of A262. The Bayes-X software, which is implemented in Fortran 90, is available at http://www.mrao.cam.ac.uk/facilities/software/bayesx/.
81 - Alessandro Peca 2020
We present a procedure to constrain the redshifts of obscured ($N_H > 10^{22}$ cm$^{-2}$) Active Galactic Nuclei (AGN) based on low-count statistics X-ray spectra, which can be adopted when photometric and/or spectroscopic redshifts are unavailable or difficult to obtain. We selected a sample of 54 obscured AGN candidates on the basis of their X-ray hardness ratio, $HR>-0.1$, in the Chandra deep field ($sim$479 ks, 335 arcmin$^2$) around the $z=6.3$ QSO SDSS J1030+0524. The sample has a median value of $approx80$ net counts in the 0.5-7 keV energy band. We estimate reliable X-ray redshift solutions taking advantage of the main features in obscured AGN spectra, like the Fe 6.4 keV K$mathrm{alpha}$ emission line, the 7.1 keV Fe absorption edge and the photoelectric absorption cut-off. The significance of such features is investigated through spectral simulations, and the derived X-ray redshift solutions are then compared with photometric redshifts. Both photometric and X-ray redshifts are derived for 33 sources. When multiple solutions are derived by any method, we find that combining the redshift solutions of the two techniques improves the rms by a factor of two. Using our redshift estimates ($0.1lesssim z lesssim 4$), we derived absorbing column densities in the range $sim 10^{22}-10^{24}$ cm$^{-2}$ and absorption-corrected, 2-10 keV rest-frame luminosities between $sim 10^{42}$ and $10^{45}$ erg s$^{-1}$, with median values of $N_H = 1.7 times 10^{23}$ cm$^{-2}$ and $L_{mathrm{2-10, keV}} = 8.3times10^{43}$ erg s$^{-1}$, respectively. Our results suggest that the adopted procedure can be applied to current and future X-ray surveys, for sources detected only in the X-rays or that have uncertain photometric or single-line spectroscopic redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا