Do you want to publish a course? Click here

Bayes-X: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

112   0   0.0 ( 0 )
 Added by Malak Olamaie Dr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first public release of our Bayesian inference tool, Bayes-X, for the analysis of X-ray observations of galaxy clusters. We illustrate the use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as they would be observed by a Chandra-like X-ray observatory. In both the simulations and the analysis pipeline we assume that the dark matter density follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. We then perform four sets of analyses. By numerically exploring the joint probability distribution of the cluster parameters given simulated Chandra-like data, we show that the model and analysis technique can robustly return the simulated cluster input quantities, constrain the cluster physical parameters and reveal the degeneracies among the model parameters and cluster physical parameters. We then analyse Chandra data on the nearby cluster, A262, and derive the cluster physical profiles. To illustrate the performance of the Bayesian model selection, we also carried out analyses assuming an Einasto profile for the matter density and calculated the Bayes factor. The results of the model selection analyses for the simulated data favour the NFW model as expected. However, we find that the Einasto profile is preferred in the analysis of A262. The Bayes-X software, which is implemented in Fortran 90, is available at http://www.mrao.cam.ac.uk/facilities/software/bayesx/.



rate research

Read More

We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
We jointly analyze Bolocam Sunyaev-Zeldovich (SZ) effect and Chandra X-ray data for a set of 45 clusters to derive gas density and temperature profiles without using spectroscopic information. The sample spans the mass and redshift range $3 times 10^{14} M_{odot} le M_{500} le 25 times 10^{14} M_{odot}$ and $0.15le z le 0.89$. We define cool-core (CC) and non-cool core (NCC) subsamples based on the central X-ray luminosity, and 17/45 clusters are classified as CC. In general, the profiles derived from our analysis are found to be in good agreement with previous analyses, and profile constraints beyond $r_{500}$ are obtained for 34/45 clusters. In approximately 30% of the CC clusters our analysis shows a central temperature drop with a statistical significance of $>3sigma$; this modest detection fraction is due mainly to a combination of coarse angular resolution and modest S/N in the SZ data. Most clusters are consistent with an isothermal profile at the largest radii near $r_{500}$, although 9/45 show a significant temperature decrease with increasing radius. The sample mean density profile is in good agreement with previous studies, and shows a minimum intrinsic scatter of approximately 10% near $0.5 times r_{500}$. The sample mean temperature profile is consistent with isothermal, and has an intrinsic scatter of approximately 50% independent of radius. This scatter is significantly higher compared to earlier X-ray-only studies, which find intrinsic scatters near 10%, likely due to a combination of unaccounted for non-idealities in the SZ noise, projection effects, and sample selection.
All-sky data from the Planck survey and the Meta-Catalogue of X-ray detected Clusters of galaxies (MCXC) are combined to investigate the relationship between the thermal Sunyaev-Zeldovich (SZ) signal and X-ray luminosity. The sample comprises ~ 1600 X-ray clusters with redshifts up to ~ 1 and spans a wide range in X-ray luminosity. The SZ signal is extracted for each object individually, and the statistical significance of the measurement is maximised by averaging the SZ signal in bins of X-ray luminosity, total mass, or redshift. The SZ signal is detected at very high significance over more than two decades in X-ray luminosity (10^43 erg/s < L_500 E(z)^-7/3 < 2 X 10^45 erg/s). The relation between intrinsic SZ signal and X-ray luminosity is investigated and the measured SZ signal is compared to values predicted from X-ray data. Planck measurements and X-ray based predictions are found to be in excellent agreement over the whole explored luminosity range. No significant deviation from standard evolution of the scaling relations is detected. For the first time the intrinsic scatter in the scaling relation between SZ signal and X-ray luminosity is measured and found to be consistent with the one in the luminosity -- mass relation from X-ray studies. There is no evidence of any deficit in SZ signal strength in Planck data relative to expectations from the X-ray properties of clusters, underlining the robustness and consistency of our overall view of intra-cluster medium properties.
We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts $1.05 < z < 1.71$, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zeldovich (SZ) effect surveys, and observed with both the textit{XMM-Newton} and textit{Chandra} satellites. For each cluster, a precise gas mass profile was extracted, from which the value of $r_{500}$ could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, $r<0.3r_{500}$ and $0.3<r/r_{500}<1.0$. For the outer bin, the combined measurement for all ten clusters, $Z/Z_{odot} = 0.21 pm 0.09$, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form $Z propto left(1+zright)^gamma$, we measure a slope $gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters at 0.35 < z < 0.9 selected in the X-ray with the ROSAT PSPC 400 deg2 survey, and a sample of 90 clusters at 0.25 < z < 1.2 selected via the Sunyaev-Zeldovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts and photon asymmetry. The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range z ~ 0.3 to z ~ 1, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا