Do you want to publish a course? Click here

Lithium, Carbon, and Oxygen Abundances of Hyades F-G Type Stars

202   0   0.0 ( 0 )
 Added by Yoichi Takeda
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an attempt to carry out a systematic study on the behavior of the photospheric abundances of Li, C, and O (along with Fe) for Hyades main-sequence stars in the T_eff range of ~5000-7000K, we conducted an extensive spectrum-synthesis analysis applied to four spectral regions (comprising lines of Fe-group elements, Li I 6708 line, C I 7111-7119 lines, and O I 6156-8 lines) based on the high-dispersion spectra of 68 selected F-G type stars belonging to this cluster. The abundances of C and O turned out to be fairly uniform in a marginally supersolar level such like the case of Fe: <[C/H]> = +0.15 (sigma = 0.08), <[O/H]> = +0.22 (sigma = 0.14), and <[Fe/H]> = +0.11(sigma = 0.08), suggesting that the primordial abundances are almost retained for these elements. Strictly, however, they show a slightly increasing trend with a decrease in T_eff (typically on the order of ~10^(-4) dex/K; while this might be due to an improper choice of atmospheric parameters, we found it hard to give a quantitatively reasonable explanation. Regarding Li, we confirmed the well-known T_eff-dependent trend in the Li abundance reported so far (a conspicuous Li-trough at 6300K <T_eff< 6700K and a progressive decrease toward a lower T_eff at T_eff < 6000K), which means that the surface Li of Hyades stars is essentially controlled only by T_eff and other parameters such as the rotational velocity are almost irrelevant.



rate research

Read More

Beryllium and oxygen abundances have been derived in a sample of F-type field stars for which lithium abundances had been measured previously, with the aim of obtaining observational constraints to discriminate between the different mixing mechanisms proposed. Mixing associated with the transport of angular momentum in the stellar interior and internal gravity waves within the framework of rotating evolutionary models, appear to be promising ways to explain the observations.
It has been occasionally suggested that Fe abundances of K dwarfs derived from Fe I and Fe II lines show considerable discrepancies and oxygen abundances determined from high-excitation O I 7771-5 triplet lines are appreciably overestimated (the problem becoming more serious towards lower Teff), which however has not yet been widely confirmed. With an aim to clarify this issue, we spectroscopically determined the atmospheric parameters of 148 G-K dwarfs (Hyades cluster stars and field stars) by assuming the classical Fe I/Fe II ionization equilibrium as usual, and determined their oxygen abundances by applying the non-LTE spectrum fitting analysis to O I 7771-5 lines. It turned out that the resulting parameters did not show any significant inconsistency with those determined by other methods (for example, the mean differences in Teff and log g from the well-determined solutions of Hyades dwarfs are mostly <~100K and <~0.1dex). Likewise, the oxygen abundances of Hyades stars are around [O/H]~+0.2dex (consistent with the metallicity of this cluster) without exhibiting any systematic Teff-dependence. Accordingly, we conclude that parameters can be spectroscopically evaluated to a sufficient precision in the conventional manner (based on the Saha-Boltzmann equation for Fe I/Fe II) and oxygen abundances can be reliably determined from the O I 7771-5 triplet for K dwarfs as far as stars of Teff>~4500K are concerned. We suspect that previously reported strongly Teff-dependent discrepancies may have stemmed mainly from overestimation of weak-line strengths and/or improper Teff scale.
To revisit the long-standing problem of possible inconsistency concerning the oxygen composition in the current galactic gas and in the solar atmosphere (i.e., the former being appreciably lower by ~0.3 dex) apparently contradicting the galactic chemical evolution, we carried out oxygen abundance determinations for 64 mid- through late-B stars by using the O I 6156-8 lines while taking into account the non-LTE effect, and compared them with the solar O abundance established in the same manner. The resulting mean oxygen abundance was <A(O)> = 8.71 (+/- 0.06), which means that [O/H] (star-Sun differential abundance) is ~-0.1, the difference being less significant than previously thought. Moreover, since the 3D correction may further reduce the reference solar oxygen abundance (8.81) by ~0.1 dex, we conclude that the photospheric O abundances of these B stars are almost the same as that of the Sun. We also determined the non-LTE abundances of neon for the sample B stars from Ne I 6143/6163 lines to be <A(Ne)> = 8.02 (+/- 0.09), leading to the Ne-to-O ratio of ~0.2 consistent with the recent studies. This excludes a possibility of considerably high Ne/O ratio once proposed as a solution to the confronted solar model problem.
We aim to determine abundances of Li, O and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. We find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, $langle A({rm Li})_{rm 3D~NLTE}rangle = 1.78 pm 0.18$ dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. The lithium abundances in 47 Tuc, when put into context with observations in other clusters and field stars, suggest that stars that are more metal-rich than [FeH] sim -1.0 experience significant lithium depletion during their lifetime on the main sequence, while the more metal-poor stars do not. Rather strikingly, our results suggest that initial lithium abundance with which the star was created may only depend on its age (the younger the star, the higher its Li content) and not on its metallicity.
The application to main-sequence stars of the rotation-induced mixing theory in the presence of mu-gradients leads to partial mixing in the lithium destruction region, not visible in the atmosphere. The induced lithium depletion becomes visible in the sub-giant phase as soon as the convective zone deepens enough. This may explain why the observed lithium dilution is smoother and the final dilution factor larger than obtained in standard models, while the lithium abundance variations are very small on the main sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا