Do you want to publish a course? Click here

Spectroscopic Determination of Stellar Parameters and Oxygen Abundances for Hyades/Field G-K Dwarfs

99   0   0.0 ( 0 )
 Added by Yoichi Takeda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been occasionally suggested that Fe abundances of K dwarfs derived from Fe I and Fe II lines show considerable discrepancies and oxygen abundances determined from high-excitation O I 7771-5 triplet lines are appreciably overestimated (the problem becoming more serious towards lower Teff), which however has not yet been widely confirmed. With an aim to clarify this issue, we spectroscopically determined the atmospheric parameters of 148 G-K dwarfs (Hyades cluster stars and field stars) by assuming the classical Fe I/Fe II ionization equilibrium as usual, and determined their oxygen abundances by applying the non-LTE spectrum fitting analysis to O I 7771-5 lines. It turned out that the resulting parameters did not show any significant inconsistency with those determined by other methods (for example, the mean differences in Teff and log g from the well-determined solutions of Hyades dwarfs are mostly <~100K and <~0.1dex). Likewise, the oxygen abundances of Hyades stars are around [O/H]~+0.2dex (consistent with the metallicity of this cluster) without exhibiting any systematic Teff-dependence. Accordingly, we conclude that parameters can be spectroscopically evaluated to a sufficient precision in the conventional manner (based on the Saha-Boltzmann equation for Fe I/Fe II) and oxygen abundances can be reliably determined from the O I 7771-5 triplet for K dwarfs as far as stars of Teff>~4500K are concerned. We suspect that previously reported strongly Teff-dependent discrepancies may have stemmed mainly from overestimation of weak-line strengths and/or improper Teff scale.



rate research

Read More

In an attempt to carry out a systematic study on the behavior of the photospheric abundances of Li, C, and O (along with Fe) for Hyades main-sequence stars in the T_eff range of ~5000-7000K, we conducted an extensive spectrum-synthesis analysis applied to four spectral regions (comprising lines of Fe-group elements, Li I 6708 line, C I 7111-7119 lines, and O I 6156-8 lines) based on the high-dispersion spectra of 68 selected F-G type stars belonging to this cluster. The abundances of C and O turned out to be fairly uniform in a marginally supersolar level such like the case of Fe: <[C/H]> = +0.15 (sigma = 0.08), <[O/H]> = +0.22 (sigma = 0.14), and <[Fe/H]> = +0.11(sigma = 0.08), suggesting that the primordial abundances are almost retained for these elements. Strictly, however, they show a slightly increasing trend with a decrease in T_eff (typically on the order of ~10^(-4) dex/K; while this might be due to an improper choice of atmospheric parameters, we found it hard to give a quantitatively reasonable explanation. Regarding Li, we confirmed the well-known T_eff-dependent trend in the Li abundance reported so far (a conspicuous Li-trough at 6300K <T_eff< 6700K and a progressive decrease toward a lower T_eff at T_eff < 6000K), which means that the surface Li of Hyades stars is essentially controlled only by T_eff and other parameters such as the rotational velocity are almost irrelevant.
The study of stellar parameters of planet-hosting stars, such as metallicity and chemical abundances, help us to understand the theory of planet formation and stellar evolution. Here, we present a catalogue of accurate stellar atmospheric parameters and iron abundances for a sample of 257 K and G field evolved stars that are being surveyed for planets using precise radial--velocity measurements as part of the CORALIE programme to search for planets around giants. The analysis was done using a set of high--resolution and high--signal-to-noise Ultraviolet and Visible Echelle Spectrograph spectra. The stellar parameters were derived using Fe I and II ionization and excitation equilibrium methods. To take into account possible effects related to the choice of the lines on the derived parameters, we used three different iron line-list sets in our analysis, and the results differ among themselves by a small factor for most of stars. {For those stars with previous literature parameter estimates, we found very good agreement with our own values.} In the present catalogue we are providing new precise spectroscopic measurements of effective temperature, surface gravity, microturbulence, and metallicity for 190 stars for which it has not been found or published in previous articles.
We present new ultra-metal-poor (UMP) stars parameters with [Fe/H]<-4.0 based on line-by-line non-local thermodynamic equilibrium (NLTE) abundances using an up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameter and show that they can grow up to ~1.0 dex in [Fe/H], 150K in Teff and 0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being signifcantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.
We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions.With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic StePar code for deriving precise stellar atmospheric parameters: Teff, log g, Vmicro, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.
167 - Yoichi Takeda , Bunei Sato , 2008
The properties of 322 intermediate-mass late-G giants (comprising 10 planet-host stars) selected as the targets of Okayama Planet Search Program, many of which are red-clump giants, were comprehensively investigated by establishing their various stellar parameters (atmospheric parameters including turbulent velocity fields, metallicity, luminosity, mass, age, projected rotational velocity, etc.), and their photospheric chemical abundances for 17 elements, in order to study their mutual dependence, connection with the existence of planets, and possible evolution-related characteristics. The metallicity distribution of planet-host giants was found to be almost the same as that of non-planet-host giants, making marked contrast to the case of planet-host dwarfs tending to be metal-rich. Generally, the metallicities of these comparatively young (typical age of ~10^9 yr) giants tend to be somewhat lower than those of dwarfs at the same age, and super-metal-rich ([Fe/H] > 0.2) giants appear to be lacking. Apparent correlations were found between the abundances of C, O, and Na, suggesting that the surface compositions of these elements have undergone appreciable changes due to dredge-up of H-burning products by evolution-induced deep envelope mixing which becomes more efficient for higher-mass stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا