Do you want to publish a course? Click here

Information theoretic approach to ground-state phase transitions for two and three-dimensional frustrated spin systems

111   0   0.0 ( 0 )
 Added by Oliver Melchert
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The information theoretic observables entropy (a measure of disorder), excess entropy (a measure of complexity) and multi information are used to analyze ground-state spin configurations for disordered and frustrated model systems in 2D and 3D. For both model systems, ground-state spin configurations can be obtained in polynomial time via exact combinatorial optimization algorithms, which allowed us to study large systems with high numerical accuracy. Both model systems exhibit a continuous transition from an ordered to a disordered ground state as a model parameter is varied. By using the above information theoretic observables it is possible to detect changes in the spatial structure of the ground states as the critical point is approached. It is further possible to quantify the scaling behavior of the information theoretic observables in the vicinity of the critical point. For both model systems considered, the estimates of critical properties for the ground-state phase transitions are in good agreement with existing results reported in the literature.



rate research

Read More

We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
The Anderson transition in three dimensions in a randomly varying magnetic flux is investigated in detail by means of the transfer matrix method with high accuracy. Both, systems with and without an additional random scalar potential are considered. We find a critical exponent of $ u=1.45pm0.09$ with random scalar potential. Without it, $ u$ is smaller but increases with the system size and extrapolates within the error bars to a value close to the above. The present results support the conventional classification of universality classes due to symmetry.
132 - X. P. Qin , B. Zheng , N. J. Zhou 2012
With Monte Carlo simulations, we systematically investigate the depinning phase transition in the two-dimensional driven random-field clock model. Based on the short-time dynamic approach, we determine the transition field and critical exponents. The results show that the critical exponents vary with the form of the random-field distribution and the strength of the random fields, and the roughening dynamics of the domain interface belongs to the new subclass with $zeta eq zeta_{loc} eq zeta_s$ and $zeta_{loc} eq 1$. More importantly, we find that the transition field and critical exponents change with the initial orientations of the magnetization of the two ordered domains.
The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases, are found in the global phase diagram. The spin-glass phase is more extensive when randomness is introduced within the planes than when it is introduced in lines along one direction. Phase diagram cross-sections, with no Nishimori symmetry, with Nishimori symmetry lines, or entirely imbedded into Nishimori symmetry, are studied. The boundary between the ferromagnetic and spin-glass phases can be either reentrant or forward, that is either receding from or penetrating into the spin-glass phase, as temperature is lowered. However, this boundary is always reentrant when the multicritical point terminating it is on the Nishimori symmetry line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا