Do you want to publish a course? Click here

Reentrant and Forward Phase Diagrams of the Anisotropic Three-Dimensional Ising Spin Glass

161   0   0.0 ( 0 )
 Added by A. Nihat Berker
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases, are found in the global phase diagram. The spin-glass phase is more extensive when randomness is introduced within the planes than when it is introduced in lines along one direction. Phase diagram cross-sections, with no Nishimori symmetry, with Nishimori symmetry lines, or entirely imbedded into Nishimori symmetry, are studied. The boundary between the ferromagnetic and spin-glass phases can be either reentrant or forward, that is either receding from or penetrating into the spin-glass phase, as temperature is lowered. However, this boundary is always reentrant when the multicritical point terminating it is on the Nishimori symmetry line.



rate research

Read More

We present a large-scale simulation of the three-dimensional Ising spin glass with Gaussian disorder to low temperatures and large sizes using optimized population annealing Monte Carlo. Our primary focus is investigating the number of pure states regarding a controversial statistic, characterizing the fraction of centrally peaked disorder instances, of the overlap function order parameter. We observe that this statistic is subtly and sensitively influenced by the slight fluctuations of the integrated central weight of the disorder-averaged overlap function, making the asymptotic growth behaviour very difficult to identify. Modified statistics effectively reducing this correlation are studied and essentially monotonic growth trends are obtained. The effect of temperature is also studied, finding a larger growth rate at a higher temperature. Our state-of-the-art simulation and variance reduction data analysis suggest that the many pure state picture is most likely and coherent.
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates that the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.
The spin-1/2 quantum Heisenberg model is studied in all spatial dimensions d by renormalization-group theory. Strongly asymmetric phase diagrams in temperature and antiferromagnetic bond probability p are obtained in dimensions d geq 3. The asymmetry at high temperatures approaching the pure ferromagnetic and antiferromagnetic systems disappears as d is increased. However, the asymmetry at low but finite temperatures remains in all dimensions, with the antiferromagnetic phase receding to the ferromagnetic phase. A finite-temperature second-order phase boundary directly between the ferromagnetic and antiferromagnetic phases occurs in d geq 6, resulting in a new multicritical point at its meeting with the boundaries to the paramagnetic phase. In d=3,4,5, a paramagnetic phase reaching zero temperature intervenes asymmetrically between the ferromagnetic and reentrant antiferromagnetic phases. There is no spin-glass phase in any dimension.
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, u = 2.562(42) for the thermal exponent, eta = -0.3900(36) for the anomalous dimension and omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield alpha = -5.69(13), beta = 0.782(10) and gamma = 6.13(11). We also compute several universal quantities at Tc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا