Do you want to publish a course? Click here

Electron wavefunction probing in room-temperature semiconductors: direct observation of Rabi oscillations and self-induced transparency

191   0   0.0 ( 0 )
 Added by Amir Capua
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum coherent light-matter interactions have been at the forefront of scientific interest since the fundamental predictions of Einstein and the later work of Rabi. Direct observation of quantum coherent interactions entails probing the electronic wavefunction which requires that the electronic state of the matter does not de-phase during the measurement, a condition that can be satisfied by lengthening the coherence time or by shortening the observation time. The short de-phasing time in semiconductors has dictated that all coherent effects reported to date have been recorded directly only at cryogenic temperatures. Here we report on the first direct electronic wavefunction probing in a room-temperature semiconductor. Employing an ultrafast characterization scheme we have demonstrated Rabi oscillations and self-induced transparency in an electrically driven, room-temperature semiconductor laser amplifier, revealing the most intimate details of the light-matter interactions seen to date. The ability to employ quantum effects in solid-state media, which operate at elevated temperatures, will finally bring true quantum mechanical concepts into the realm of practical devices.



rate research

Read More

136 - Ayaka Tsukahara 2013
Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials (NM) due to spin-orbit interaction (SOI). In ferromagnetic materials (FM), SOI is known to contribute to anomalous Hall effect (AHE), anisotropic magnetoresistance (AMR), and other spin-dependent transport phenomena. However, SOI in FM has been ignored in ISHE studies in spintronic devices, and the possibility of self-induced ISHE in FM has never been explored until now. In this paper, we demonstrate the experimental verification of ISHE in FM. We found that the spin-pumping-induced spin current in permalloy (Py) film generates a transverse electromotive force (EMF) in the film itself, which results from the coupling of spin current and SOI in Py. The control experiments ruled out spin rectification effect and anomalous Nernst effect as the origin of the EMF.
136 - S. Bertaina , N. Groll , L. Chen 2011
We report on multi-photon Rabi oscillations and controlled tuning of a multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasi-harmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, such as the six level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by either compensating the cubic anisotropy with a precise static field orientation, or by microwave field intensity. Using the rotating frame approximation, the experiments are very well explained by both an analytical model and a generalized numerical model. The calculated multi-photon Rabi frequencies are in excellent agreement with the experimental data.
129 - Jie Sun , Ruoyuan Li , Chang Zhao 2007
Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. Resonant tunneling current is superimposed on the thermal current, and they make up the total electron transport in devices. Steps in current-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77K or 300K, and this is the first time that resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect.
It is well known that diamond does not deform plastically at room temperature and usually fails in catastrophic brittle fracture. Here we demonstrate room-temperature dislocation plasticity in sub-micrometer sized diamond pillars by in-situ mechanical testing in the transmission electron microscope. We document in unprecedented details of spatio-temporal features of the dislocations introduced by the confinement-free compression, including dislocation generation and propagation. Atom-resolved observations with tomographic reconstructions show unequivocally that mixed-type dislocations with Burgers vectors of 1/2<110> are activated in the non-close-packed {001} planes of diamond under uniaxial compression of <111> and <110> directions, respectively, while being activated in the {111} planes under the <100> directional loading, indicating orientation-dependent dislocation plasticity. These results provide new insights into the mechanical behavior of diamond and stimulate reconsideration of the basic deformation mechanism in diamond as well as in other brittle covalent crystals at low temperatures.
156 - M. Granada , D. Lucot , R. Giraud 2015
We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا