Do you want to publish a course? Click here

Direct Observation of Room-Temperature Dislocation Plasticity in Diamond

131   0   0.0 ( 0 )
 Added by Hongtao Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that diamond does not deform plastically at room temperature and usually fails in catastrophic brittle fracture. Here we demonstrate room-temperature dislocation plasticity in sub-micrometer sized diamond pillars by in-situ mechanical testing in the transmission electron microscope. We document in unprecedented details of spatio-temporal features of the dislocations introduced by the confinement-free compression, including dislocation generation and propagation. Atom-resolved observations with tomographic reconstructions show unequivocally that mixed-type dislocations with Burgers vectors of 1/2<110> are activated in the non-close-packed {001} planes of diamond under uniaxial compression of <111> and <110> directions, respectively, while being activated in the {111} planes under the <100> directional loading, indicating orientation-dependent dislocation plasticity. These results provide new insights into the mechanical behavior of diamond and stimulate reconsideration of the basic deformation mechanism in diamond as well as in other brittle covalent crystals at low temperatures.



rate research

Read More

Despite decades of extensive research on mechanical properties of diamond, much remains to be understood in term of plastic deformation mechanisms due to the poor deformability at room temperature. In a recent work in Advanced Materials, it was claimed that room-temperature plasticity occurred in <001>-oriented single-crystal diamond nanopillars based on observation of unrecovered deformation inside scanning electron microscope. The plastic deformation was suggested to be mediated by a phase transition from sp3 carbon to an O8-carbon phase by molecular dynamics simulations. By comparison, our in-situ transmission electron microscopy study reveals that the room-temperature plasticity can be carried out by dislocation slip in both <100> and <111>-oriented diamond nanopillars. The brittle-to-ductile transition is highly dependent on the stress state. We note that the surface structure may play a significant role in the deformation mechanisms as the incipient plasticity always occurs from the surface region in nanoscale diamonds.
The design of large-scale electronic circuits that are entirely spintronics-driven requires a current source that is highly spin-polarised at and beyond room temperature, cheap to build, efficient at the nanoscale and straightforward to integrate with semiconductors. Yet despite research within several subfields spanning nearly two decades, this key building block is still lacking. We experimentally and theoretically show how the interface between Co and phthalocyanine molecules constitutes a promising candidate. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the moleculess nitrogen pi orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanims in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature.
Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
96 - D. Andre , Z. Xie , F. Ott 2021
The deformation behaviour of the intermetallic Al$_{2}$Cu-phase was investigated using atomistic simulations and micropillar compression, where slip on the unexpected {211} and {022} slip planes was revealed. Additionally, all possible slip systems for the intermetallic phases were further evaluated and a preference for the activation of slip systems based on their effective interplanar distances as well as the effective Burgers vector is proposed. The effective interplanar distance corresponds to the manually determined interplanar distance, whereas the effective Burgers vector takes a potential dislocation dissociation into account. This new order is: {211}1/2<111>, {022}1/2<111> and {022}<100>, {110}<001>, {310}<001>, {022}<011>, {110}1/2<111>, {112}<110> and {112}1/2<111> from high to low ratio of deff/beff. Also, data on the critical resolved shear stresses of several of these slip systems were measured.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا