Do you want to publish a course? Click here

Direct probing of band-structure Berry phase in diluted magnetic semiconductors

137   0   0.0 ( 0 )
 Added by Xavier Waintal
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.

rate research

Read More

We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes which restore the initial ferromagnetic order in a nanosecond time scale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within a time scale of few hundreds of picoseconds.
Manipulating valley-dependent Berry phase effects provides remarkable opportunities for both fundamental research and practical applications. Here, by referring to effective model analysis, we propose a general scheme for realizing topological magneto-valley phase transitions. More importantly, by using valley-half-semiconducting VSi2N4 as an outstanding example, we investigate valley-reversible Berry phase effects which drive the change-in-sign valley anomalous transport characteristics via external means such as biaxial strain, electric field, and correlation effects. As a result, this gives rise to quantiz
The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasi-free carriers and magnetic impurities, but also to a local spin-independent disorder potential for the carriers. Based on a quantum kinetic theory for the carrier and impurity density matrices as well as the magnetic and non-magnetic carrier-impurity correlations, the influence of the non-magnetic scattering potential on the spin dynamics in DMS after optical excitation with circularly polarized light is investigated using the example of Mn-doped CdTe. It is shown that non-Markovian effects, which are predicted in calculations where only the magnetic carrier-impurity interaction is accounted for, can be strongly suppressed in the presence of non-magnetic impurity scattering. This effect can be traced back to a significant redistribution of carriers in $mathbf{k}$-space which is enabled by the build-up of large carrier-impurity correlation energies. A comparison with the Markov limit of the quantum kinetic theory shows that, in the presence of an external magnetic field parallel to the initial carrier polarization, the asymptotic value of the spin polarization at long times is significantly different in the quantum kinetic and the Markovian calculations. This effect can also be attributed to the formation of strong correlations which invalidates the semiclassical Markovian picture and it is stronger when the non-magnetic carrier-impurity interaction is accounted for. In an external magnetic field perpendicular to the initial carrier spin, the correlations are also responsible for a renormalization of the carrier spin precession frequency.
The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band formed from magnetic dopant states. The theoretical framework incorporates real-space Greens functions to properly incorporate spatial correlations in the disordered conduction band and valence band electronic structure, and includes extended and localized electronic states on an equal basis. Our findings reconcile unusual trends in the experimental magnetic circular dichroism in III-V DMSs with the antiferromagnetic p-d exchange interaction between a magnetic dopant spin and its host.
We explore the impact of a Rashba-type spin-orbit interaction in the conduction band on the spin dynamics of hot excitons in diluted magnetic semiconductor quantum wells. In materials with strong spin-orbit coupling, we identify parameter regimes where spin-orbit effects greatly accelerate the spin decay and even change the dynamics qualitatively in the form of damped oscillations. Furthermore, we show that the application of a small external magnetic field can be used to either mitigate the influence of spin-orbit coupling or entirely remove its effects for fields above a material-dependent threshold.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا