General statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems are analyzed. It is argued that arbitrary probability densities on the hybrid phase space must be considered as the class of possible physically distinguishable statistical ensembles of hybrid systems. Nevertheless, statistical operators associated with the hybrid system and with the quantum subsystem can be consistently defined. Dynamical equations for the statistical operators representing the mixed states of the hybrid system and its quantum subsystem are derived and analyzed. In particular, these equations irreducibly depend on the total probability density on the hybrid phase space.
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators. In this paper, we propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator components of the Hamiltonian. Its main subroutine is the practical log-partition function estimation algorithm, which is based on the minimization of the free energy of the system. Concretely, we devise a stochastic variational quantum eigensolver (SVQE) to diagonalize the Hamiltonians and then exploit the obtained eigenvalues to compute the free energys global minimum using convex optimization. Our approach not only avoids the challenge of estimating von Neumann entropy in free energy minimization, but also reduces the quantum resources via importance sampling in Hamiltonian diagonalization, facilitating the implementation of our method on near-term quantum devices. Finally, we demonstrate our approachs validity by conducting numerical experiments with Hamiltonians of interest in quantum many-body physics.
Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule is a function of nuclear configurations. In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms, which explores both Hamiltonian and wavefunction spaces for optimization. Aiming for solving quantum chemistry problems more efficiently, we first propose mutual gradient descent algorithm for geometry optimization by updating parameters of Hamiltonian and wavefunction alternatively, which shows a rapid convergence towards equilibrium structures of molecules. We then establish differential equations that governs how optimized variational parameters of wavefunction change with intrinsic parameters of the Hamiltonian, which can speed up calculation of energy potential surface. Our studies suggest a direction of hybrid quantum-classical algorithm for solving quantum systems more efficiently by considering spaces of both Hamiltonian and wavefunction.
Constrained Hamiltonian description of the classical limit is utilized in order to derive consistent dynamical equations for hybrid quantum-classical systems. Starting with a compound quantum system in the Hamiltonian formulation conditions for classical behavior are imposed on one of its subsystems and the corresponding hybrid dynamical equations are derived. The presented formalism suggests that the hybrid systems have properties that are not exhausted by those of quantum and classical systems.
A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of self-adjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Mobius, transformations.
We investigate different measures of stability of quantum statistical ensembles with respect to local measurements. We call a quantum statistical ensemble stable if a small number of local measurements cannot significantly modify the total-energy distribution representing the ensemble. First, we numerically calculate the evolution of the stability measure introduced in our previous work [Phys. Rev. E 94, 062106 (2016)] for an ensemble representing a mixture of two canonical ensembles with very different temperatures in a periodic chain of interacting spins-1/2. Second, we propose other possible stability measures and discuss their advantages and disadvantages. We also show that, for small system sizes available to numerical simulations of local measurements, finite-size effects are rather pronounced.