Do you want to publish a course? Click here

Quantum Feedback Networks: Hamiltonian Formulation

625   0   0.0 ( 0 )
 Added by John Gough
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of self-adjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Mobius, transformations.



rate research

Read More

137 - J. Gough , R. Gohm , M. Yanagisawa 2008
The mathematical theory of quantum feedback networks has recently been developed for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical systems Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.
General statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems are analyzed. It is argued that arbitrary probability densities on the hybrid phase space must be considered as the class of possible physically distinguishable statistical ensembles of hybrid systems. Nevertheless, statistical operators associated with the hybrid system and with the quantum subsystem can be consistently defined. Dynamical equations for the statistical operators representing the mixed states of the hybrid system and its quantum subsystem are derived and analyzed. In particular, these equations irreducibly depend on the total probability density on the hybrid phase space.
We give an alternative derivation for the explicit formula of the effective Hamiltonian describing the evolution of the quantum state of any number of photons entering a linear optics multiport. The description is based on the effective Hamiltonian of the optical system for a single photon and comes from relating the evolution in the Lie group that describes the unitary evolution matrices in the Hilbert space of the photon states to the evolution in the Lie algebra of the Hamiltonians for one and multiple photons. We give a few examples of how a group theory approach can shed light on some properties of devices with two input ports.
The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism.
52 - C. DHelon , M.R. James 2005
This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا