Do you want to publish a course? Click here

Hybrid quantum-classical algorithms for solving quantum chemistry in Hamiltonian-wavefunction space

71   0   0.0 ( 0 )
 Added by Dan-Bo Zhang Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Variational quantum eigensolver~(VQE) typically optimizes variational parameters in a quantum circuit to prepare eigenstates for a quantum system. Its applications to many problems may involve a group of Hamiltonians, e.g., Hamiltonian of a molecule is a function of nuclear configurations. In this paper, we incorporate derivatives of Hamiltonian into VQE and develop some hybrid quantum-classical algorithms, which explores both Hamiltonian and wavefunction spaces for optimization. Aiming for solving quantum chemistry problems more efficiently, we first propose mutual gradient descent algorithm for geometry optimization by updating parameters of Hamiltonian and wavefunction alternatively, which shows a rapid convergence towards equilibrium structures of molecules. We then establish differential equations that governs how optimized variational parameters of wavefunction change with intrinsic parameters of the Hamiltonian, which can speed up calculation of energy potential surface. Our studies suggest a direction of hybrid quantum-classical algorithm for solving quantum systems more efficiently by considering spaces of both Hamiltonian and wavefunction.



rate research

Read More

Quantum computers can exploit a Hilbert space whose dimension increases exponentially with the number of qubits. In experiment, quantum supremacy has recently been achieved by the Google team by using a noisy intermediate-scale quantum (NISQ) device with over 50 qubits. However, the question of what can be implemented on NISQ devices is still not fully explored, and discovering useful tasks for such devices is a topic of considerable interest. Hybrid quantum-classical algorithms are regarded as well-suited for execution on NISQ devices by combining quantum computers with classical computers, and are expected to be the first useful applications for quantum computing. Meanwhile, mitigation of errors on quantum processors is also crucial to obtain reliable results. In this article, we review the basic results for hybrid quantum-classical algorithms and quantum error mitigation techniques. Since quantum computing with NISQ devices is an actively developing field, we expect this review to be a useful basis for future studies.
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators. In this paper, we propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator components of the Hamiltonian. Its main subroutine is the practical log-partition function estimation algorithm, which is based on the minimization of the free energy of the system. Concretely, we devise a stochastic variational quantum eigensolver (SVQE) to diagonalize the Hamiltonians and then exploit the obtained eigenvalues to compute the free energys global minimum using convex optimization. Our approach not only avoids the challenge of estimating von Neumann entropy in free energy minimization, but also reduces the quantum resources via importance sampling in Hamiltonian diagonalization, facilitating the implementation of our method on near-term quantum devices. Finally, we demonstrate our approachs validity by conducting numerical experiments with Hamiltonians of interest in quantum many-body physics.
In this work we investigate methods to improve the efficiency and scalability of quantum algorithms for quantum chemistry applications. We propose a transformation of the electronic structure Hamiltonian in the second quantization framework into the particle-hole (p/h) picture, which offers a better starting point for the expansion of the trial wavefunction. The state of the molecular system at study is parametrized in a way to efficiently explore the sector of the molecular Fock space that contains the desired solution. To this end, we explore several trial wavefunctions to identify the most efficient parameterization of the molecular ground state. Taking advantage of known post-Hartree Fock quantum chemistry approaches and heuristic Hilbert space search quantum algorithms, we propose a new family of quantum circuits based on exchange-type gates that enable accurate calculations while keeping the gate count (i.e., the circuit depth) low. The particle-hole implementation of the Unitary Coupled Cluster (UCC) method within the Variational Quantum Eigensolver approach gives rise to an efficient quantum algorithm, named q-UCC , with important advantages compared to the straightforward translation of the classical Coupled Cluster counterpart. In particular, we show how a single Trotter step can accurately and efficiently reproduce the ground state energies of simple molecular systems.
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as the quantum variational eigensolver was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.
General statistical ensembles in the Hamiltonian formulation of hybrid quantum-classical systems are analyzed. It is argued that arbitrary probability densities on the hybrid phase space must be considered as the class of possible physically distinguishable statistical ensembles of hybrid systems. Nevertheless, statistical operators associated with the hybrid system and with the quantum subsystem can be consistently defined. Dynamical equations for the statistical operators representing the mixed states of the hybrid system and its quantum subsystem are derived and analyzed. In particular, these equations irreducibly depend on the total probability density on the hybrid phase space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا