No Arabic abstract
The chiral helimagnet Cr1/3NbS2 has been investigated by magnetic, transport and thermal properties measurements on single crystals and by first principles electronic structure calculations. From the measured field and temperature dependence of the magnetization for fields applied perpendicular to the c axis, the magnetic phase diagram has been constructed in the vicinity of the phase transitions. A transition from a paramagnetic to a magnetically ordered phase occurs near 120 K. With increasing magnetic field and at temperatures below 120 K, this material undergoes transitions from a helimagnetic to a soliton-lattice phase near 900 Oe, and then to a ferromagnetic phase near 1300 Oe. The transitions are found to strongly affect the electrical transport. The resistivity decreases sharply upon cooling near 120 K, and the spin reorientation from the helimagnetic ground state to the commensurate ferromagnetic state is evident in the magnetoresistance. At high fields a large magnetoresistance (55 % at 140 kOe) is observed near the magnetic transition temperature. Heat capacity and electronic structure calculations show the density of states at the Fermi level is low in the magnetically ordered state. Effects of spin fluctuations are likely important in understanding the behavior of Cr1/3NbS2 near and above the magnetic ordering transitions.
We have performed muon spin rotation/relaxation (muSR) measurements on single crystals of the chiral helimagnet Cr1/3NbS2 at zero to low magnetic field. The transition from the paramagnetic to helical magnetically ordered phase at zero field is marked by the onset of a coherent oscillation of the zero-field muon spin polarization below a critical temperature Tc. An enhancement of the muon spin precession frequency is observed below T ~ 50K, where anomalous behavior has been observed in bulk transport measurements. The enhanced precession frequency indicates a low-temperature modification of the helical magnetic structure. A Landau free energy analysis suggests that the low-temperature change in the magnetic structure is caused by a structural change, whereas the magnetic order above Tc is the result of an attractive interaction between the ferromagnetic moment induced by the applied field and the magnetic moments of the helical structure. We also suggest a longer periodicity of helicity below T ~ 50K, which can be verified by neutron scattering.
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3-4% of randomly-distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(T) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu{+2} spins-7/2 for x = 0 and x = 1 as previously reported. The chi(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82, a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65 a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity data for x = 0.2--0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 K to 25 K, respectively. Electrical resistivity measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, {151}Eu Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect.
We propose a phase diagram for FexBi2Te3 (0 < x < 0.1) single crystals, which belong to a class of magnetically bulk-doped topological insulators. The evolution of magnetic correlations from ferromagnetic- to antiferromagnetic- gives rise to topological phase transitions, where the paramagnetic topological insulator of Bi2Te3 turns into a band insulator with ferromagnetic-cluster glassy behaviours around x ~ 0.025, and it further evolves to a topological insulator with valence-bond glassy behaviours, which spans over the region between x ~ 0.03 up to x ~ 0.1. This phase diagram is verified by measuring magnetization, magnetotransport, and angle-resolved photoemission spectra with theoretical discussions.
The zero temperature phase diagram of the mono-axial chiral helimagnet in the magnetic field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state depends on the angle between the field and the helical axis. For field directions close to the directions parallel or perpendicular to the helical axis the transition is continuous, while for intermediate angles the transition is discontinuous and the incommensurate and commensurate states coexist on the transition line. The continuous and discontinuous transition lines are separated by two tricritical points with specific singular behaviour. The location of the continuous and discontinuous lines and of the tricritical points depend strongly on the easy-plane anisotropy, the effect of which is analyzed. For large anisotropy the conical approximation locates the transition line very accurately, although it does not predict the continuous transitions nor the tricitical behaviour. It is shown that for large anisotropy, as in CrNb3S6, the form of the transition line is universal, that is, independent of the sample, and obeys a simple equation. The position of the tricritical points, which is not universal, is theoretically estimated for a sample of CrNb3S6
We present magnetodielectric measurements in single crystals of the cubic spin-1/2 compound Cu$_2$OSeO$_3$. A magnetic field-induced electric polarization ($vec{P}$) and a finite magnetocapacitance (MC) is observed at the onset of the magnetically ordered state ($T_c = 59$ K). Both $vec{P}$ and MC are explored in considerable detail as a function of temperature (T), applied field $vec{H}_a$, and relative field orientations with respect to the crystallographic axes. The magnetodielectric data show a number of anomalies which signal magnetic phase transitions, and allow to map out the phase diagram of the system in the $H_a$-T plane. Below the 3up-1down collinear ferrimagnetic phase, we find two additional magnetic phases. We demonstrate that these are related to the field-driven evolution of a long-period helical phase, which is stabilized by the chiral Dzyalozinskii-Moriya term $D vec{M} cdot(bs{ abla}timesvec{M})$ that is present in this non-centrosymmetric compound. We also present a phenomenological Landau-Ginzburg theory for the ME$_H$ effect, which is in excellent agreement with experimental data, and shows three novel features: (i) the polarization $vec{P}$ has a uniform as well as a long-wavelength spatial component that is given by the pitch of the magnetic helices, (ii) the uniform component of $vec{P}$ points along the vector $(H^yH^z, H^zH^x, H^xH^y)$, and (iii) its strength is proportional to $eta_parallel^2-eta_perp^2/2$, where $eta_parallel$ is the longitudinal and $eta_perp$ is the transverse (and spiraling) component of the magnetic ordering. Hence, the field dependence of P provides a clear signature of the evolution of a conical helix under a magnetic field. A similar phenomenological theory is discussed for the MC.