Do you want to publish a course? Click here

Incommensurate--commensurate transitions in the mono-axial chiral helimagnet driven by the magnetic field

182   0   0.0 ( 0 )
 Added by Victor Laliena
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The zero temperature phase diagram of the mono-axial chiral helimagnet in the magnetic field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state depends on the angle between the field and the helical axis. For field directions close to the directions parallel or perpendicular to the helical axis the transition is continuous, while for intermediate angles the transition is discontinuous and the incommensurate and commensurate states coexist on the transition line. The continuous and discontinuous transition lines are separated by two tricritical points with specific singular behaviour. The location of the continuous and discontinuous lines and of the tricritical points depend strongly on the easy-plane anisotropy, the effect of which is analyzed. For large anisotropy the conical approximation locates the transition line very accurately, although it does not predict the continuous transitions nor the tricitical behaviour. It is shown that for large anisotropy, as in CrNb3S6, the form of the transition line is universal, that is, independent of the sample, and obeys a simple equation. The position of the tricritical points, which is not universal, is theoretically estimated for a sample of CrNb3S6



rate research

Read More

The chiral helimagnet Cr1/3NbS2 has been investigated by magnetic, transport and thermal properties measurements on single crystals and by first principles electronic structure calculations. From the measured field and temperature dependence of the magnetization for fields applied perpendicular to the c axis, the magnetic phase diagram has been constructed in the vicinity of the phase transitions. A transition from a paramagnetic to a magnetically ordered phase occurs near 120 K. With increasing magnetic field and at temperatures below 120 K, this material undergoes transitions from a helimagnetic to a soliton-lattice phase near 900 Oe, and then to a ferromagnetic phase near 1300 Oe. The transitions are found to strongly affect the electrical transport. The resistivity decreases sharply upon cooling near 120 K, and the spin reorientation from the helimagnetic ground state to the commensurate ferromagnetic state is evident in the magnetoresistance. At high fields a large magnetoresistance (55 % at 140 kOe) is observed near the magnetic transition temperature. Heat capacity and electronic structure calculations show the density of states at the Fermi level is low in the magnetically ordered state. Effects of spin fluctuations are likely important in understanding the behavior of Cr1/3NbS2 near and above the magnetic ordering transitions.
We present calculations of the magnetic ground state of Cs_2CuCl_4 in an applied magnetic field, with the aim of understanding the commensurately ordered state that has been discovered in recent experiments. This layered material is a realization of a Heisenberg antiferromagnet on an anisotropic triangular lattice. Its behavior in a magnetic field depends on field orientation, because of weak Dzyaloshinskii-Moriya interactions.We study the system by mapping the spin-1/2 Heisenberg Hamiltonian onto a Bose gas with hard core repulsion. This Bose gas is dilute, and calculations are controlled, close to the saturation field. We find a zero-temperature transition between incommensurate and commensurate phases as longitudinal field strength is varied, but only incommensurate order in a transverse field. Results for both field orientations are consistent with experiment.
Linearly polarized spectra of far-infrared (IR) transmission in HoMn2O5 multiferroic single crystals have been studied in the frequency range between 8.5 and 105 cm-1 and for temperatures between 5 K and 300 K. Polarization of IR-active excitations depends on the crystallographic directions in HoMn2O5 and is sensitive to the magnetic phase transitions. We attribute some of the infrared-active excitations to electric-dipole transitions between ligand-field split states of Ho3+ ions. For light polarization along crystalline b-axis, the oscillator strength of electric dipoles at low frequencies (10.5, 13, and 18 cm-1) changes significantly at the commensurate-incommensurate antiferromagnetic phase transition at T3 = 19 K. This effect shows a strong correlation with the pronounced steps of the b-directional static dielectric function. We propose that the ligand field (LF) on Ho3+ connects the magnetism and dielectric properties of this compound through coupling with the Mn spin structure. We comment on the possibility for composite excitations of magnons and excited LF states.
We present a comprehensive study of the magnetization dynamics and phase evolution in Cr$_{1/3}$NbS$_{2}$, which realizes a chiral soliton lattice (CSL). The magnetic field dependence of the ac magnetic response is analyzed for five harmonic components, $M_{nomega}(H)$ $(n =1-5)$, using a phase sensitive measurement over a frequency range, $f = 11 - 10,000$ Hz. At a critical field, the modulated CSL continuously evolves from a helicity-rich to a ferromagnetic domain-rich structure, where the crossover is revealed by the onset of an anomalous nonlinear magnetic response that coincides with extremely slow dynamics. The behavior is indicative of the formation of a spatially coherent array of large ferromagnetic domains which relax on macroscopic time-scales. The frequency dependence of the ac magnetic loss displays an asymmetric distribution of relaxation times across the highly nonlinear CSL regime, which shift to shorter time-scales with increasing temperature. We experimentally resolve the tricritical point at $T_{TCP}$ in a temperature regime above the ferromagnetic Curie temperature which separates the linear and nonlinear regimes of the CSL at the phase transition. A comprehensive phase diagram is constructed which summarized the features of the field and temperature dependence of the magnetic crossovers and phase transitions in Cr$_{1/3}$NbS$_{2}$.
Below a temperature of approximately 29 K the manganese magnetic moments of the cubic binary compound MnSi order to a long-range incommensurate helical magnetic structure. Here, we quantitatively analyze a high-statistic zero-field muon spin rotation spectrum recorded in the magnetically ordered phase of MnSi by exploiting the result of representation theory as applied to the determination of magnetic structures. Instead of a gradual rotation of the magnetic moments when moving along a <111> axis, we find that the angle of rotation between the moments of certain subsequent planes is essentially quenched. It is the magnetization of pairs of planes which rotates when moving along a <111> axis, thus preserving the overall helical structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا