No Arabic abstract
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
We develop an effective-field-theory (EFT) framework for inflation with various symmetry breaking pattern. As a prototype, we formulate anisotropic inflation from the perspective of EFT and construct an effective action of the Nambu-Goldstone bosons for the broken time translation and rotation symmetries. We also calculate the statistical anisotropy in the scalar two-point correlation function for concise examples of the effective action.
We extend the effective field theory (EFT) formalism for gravitational radiation from a binary system of compact objects to the case of extended objects. In particular, we study the EFT for a binary system consisting of two infinitely-long cosmic strings with small velocity and small spatial substructure, or wiggles. The complexity of the system requires the introduction of two perturbative expansion parameters, constructed from the velocity and size of the wiggles, in contrast with the point particle case, for which a single parameter is sufficient. This further requires us to assign new power counting rules in the system. We integrate out the modes corresponding to potential gravitons, yielding an effective action for the radiation gravitons. We show that this action describes a changing quadrupole, sourced by the bending modes of the string, which in turn generates gravitational waves. We study the ultraviolet divergences in this description, and use them to obtain the classical renormalization group flow of the string tension in such a setting.
A general covariant local field theory of the holographic dark energy model is presented. It turns out the low energy effective theory of the holographic dark energy is the massive gravity theory whose graviton has 3 polarisations, including one scalar mode and two tensor modes. The Compton wavelength is the size of the future event horizon of the universe. The UV-IR correspondence in the holographic dark energy model stems from the scalar gravitons strong coupling at the energy scale that marks the breaking down of the effective field theory.
The final ringdown phase in a coalescence process is a valuable laboratory to test General Relativity and potentially constrain additional degrees of freedom in the gravitational sector. We introduce here an effective description for perturbations around spherically symmetric spacetimes in the context of scalar-tensor theories, which we apply to study quasi-normal modes for black holes with scalar hair. We derive the equations of motion governing the dynamics of both the polar and the axial modes in terms of the coefficients of the effective theory. Assuming the deviation of the background from Schwarzschild is small, we use the WKB method to introduce the notion of light ring expansion. This approximation is analogous to the slow-roll expansion used for inflation, and it allows us to express the quasinormal mode spectrum in terms of a small number of parameters. This work is a first step in describing, in a model independent way, how the scalar hair can affect the ringdown stage and leave signatures on the emitted gravitational wave signal. Potential signatures include the shifting of the quasi-normal spectrum, the breaking of isospectrality between polar and axial modes, and the existence of scalar radiation.