Do you want to publish a course? Click here

An effective field theory of holographic dark energy

97   0   0.0 ( 0 )
 Added by Chunshan Lin
 Publication date 2021
  fields Physics
and research's language is English
 Authors Chunshan Lin




Ask ChatGPT about the research

A general covariant local field theory of the holographic dark energy model is presented. It turns out the low energy effective theory of the holographic dark energy is the massive gravity theory whose graviton has 3 polarisations, including one scalar mode and two tensor modes. The Compton wavelength is the size of the future event horizon of the universe. The UV-IR correspondence in the holographic dark energy model stems from the scalar gravitons strong coupling at the energy scale that marks the breaking down of the effective field theory.



rate research

Read More

We extend the effective field theory (EFT) formalism for gravitational radiation from a binary system of compact objects to the case of extended objects. In particular, we study the EFT for a binary system consisting of two infinitely-long cosmic strings with small velocity and small spatial substructure, or wiggles. The complexity of the system requires the introduction of two perturbative expansion parameters, constructed from the velocity and size of the wiggles, in contrast with the point particle case, for which a single parameter is sufficient. This further requires us to assign new power counting rules in the system. We integrate out the modes corresponding to potential gravitons, yielding an effective action for the radiation gravitons. We show that this action describes a changing quadrupole, sourced by the bending modes of the string, which in turn generates gravitational waves. We study the ultraviolet divergences in this description, and use them to obtain the classical renormalization group flow of the string tension in such a setting.
Assuming that superstring theory is the fundamental theory which unifies all forces of Nature at the quantum level, I argue that there are key limitations on the applicability of effective field theory techniques in describing early universe cosmology.
We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading order in the small scale limit $kgg aH$, provided the equation of state is Quintessence-like. Our effective field theory breaks down while the equation of state becomes phantom-like. We propose a solution to this problem by eliminating the scalar graviton.
We develop an effective-field-theory (EFT) framework for inflation with various symmetry breaking pattern. As a prototype, we formulate anisotropic inflation from the perspective of EFT and construct an effective action of the Nambu-Goldstone bosons for the broken time translation and rotation symmetries. We also calculate the statistical anisotropy in the scalar two-point correlation function for concise examples of the effective action.
292 - Hael Collins , R. Holman , 2012
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا