We develop an effective-field-theory (EFT) framework for inflation with various symmetry breaking pattern. As a prototype, we formulate anisotropic inflation from the perspective of EFT and construct an effective action of the Nambu-Goldstone bosons for the broken time translation and rotation symmetries. We also calculate the statistical anisotropy in the scalar two-point correlation function for concise examples of the effective action.
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
Inflationary perturbations are approximately Gaussian and deviations from Gaussianity are usually calculated using in-in perturbation theory. This method, however, fails for unlikely events on the tail of the probability distribution: in this regime non-Gaussianities are important and perturbation theory breaks down for $|zeta| gtrsim |f_{rm scriptscriptstyle NL}|^{-1}$. In this paper we show that this regime is amenable to a semiclassical treatment, $hbar to 0$. In this limit the wavefunction of the Universe can be calculated in saddle-point, corresponding to a resummation of all the tree-level Witten diagrams. The saddle can be found by solving numerically the classical (Euclidean) non-linear equations of motion, with prescribed boundary conditions. We apply these ideas to a model with an inflaton self-interaction $propto lambda dotzeta^4$. Numerical and analytical methods show that the tail of the probability distribution of $zeta$ goes as $exp(-lambda^{-1/4}zeta^{3/2})$, with a clear non-perturbative dependence on the coupling. Our results are relevant for the calculation of the abundance of primordial black holes.
We present the first quantum field theory model of inflation that is renormalizable in the matter sector, with a super-Hubble inflaton mass and sub-Planckian field excursions, which is thus technically natural and consistent with a high-energy completion within a theory of quantum gravity. This is done in the framework of warm inflation, where we show, for the first time, that strong dissipation can fully sustain a slow-roll trajectory with slow-roll parameters larger than unity in a way that is both theoretically and observationally consistent. The inflaton field corresponds to the relative phase between two complex scalar fields that collectively break a U(1) gauge symmetry, and dissipates its energy into scalar degrees of freedom in the warm cosmic heat bath. A discrete interchange symmetry protects the inflaton mass from large thermal corrections. We further show that the dissipation coefficient decreases with temperature in certain parametric regimes, which prevents a large growth of thermal inflaton fluctuations. We find, in particular, a very good agreement with the Planck legacy data for a simple quadratic inflaton potential, predicting a low tensor-to-scalar ratio $rlesssim 10^{-5}$.
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space.