Do you want to publish a course? Click here

Adaptive Backstepping Chaos Synchronization of Fractional order Coullet Systems with Mismatched Parameters

117   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, synchronization of fractional order Coullet system with precise and also unknown parameters are studied. The proposed method which is based on the adaptive backstepping, has been developed to synchronize two chaotic systems with the same or partially different attractor. Sufficient conditions for the synchronization are analytically obtained. There after an adaptive control law is derived to make the states of two slightly mismatched chaotic Coullet systems synchronized. The stability analysis is then proved using the Lyapunov stability theorem. It is the privilege of the approach that only needs a single controller signal to realize the synchronization task. A numerical simulation verifies the significance of the proposed controller especially for the chaotic synchronization task.



rate research

Read More

Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks both analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its two units by two competing mechanisms: An exponential decrease of the coupling strength is compensated by an increase due to de-synchronized activity. This mechanism prevents the network from reaching a steady state. Numerical simulations of a coupled map lattice show chaotic trajectories of de-synchronized units interrupted by pulses of mutually synchronized clusters. These pulses occur on all scales, sometimes extending to the entire network. Clusters of synchronized units can be triggered by a small group of synchronized units.
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchronization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.
Noise play a creative role in the evolution of periodic and complex systems which are essential for continuous performance of the system. The interaction of noise generated within one component of a chaotic system with other component in a linear or nonlinear interaction is crucial for system performance and stability. These types of noise are inherent, natural and insidious. This study investigates the effect of state-dependent noise on the bifurcation of two chaotic systems. Circuit realization of the systems were implemented. Numerical simulations were carried out to investigate the influence of state dependent noise on the bifurcation structure of the Chen and Arneodo-Coullet fractional order chaotic systems. Results obtained showed that state dependent noise inhibit the period doubling cascade bifurcation structure of the two systems. These results poses serious challenges to system reliability of chaotic systems in control design, secure communication and power systems.
We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables nor it needs to be active for all times for achieving generalized synchronization. The procedure is based on the analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا