Do you want to publish a course? Click here

Chaos synchronization in networks of coupled maps with time-varying topologies

112   0   0.0 ( 0 )
 Added by Fatihcan M. Atay
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks both analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.



rate research

Read More

We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchronization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.
The properties of functional relation between a non-invertible chaotic drive and a response map in the regime of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation between the current states of the maps, the functional relation becomes apparent when a sufficient interval of driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation and illustrates the main theoretical conclusions using numerical simulations.
We propose a method for detecting the presence of synchronization of self-sustained oscillator by external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the signals of self-sustained oscillator and external force and allows one to distinguish the case of true synchronization from the case of spurious synchronization caused by linear mixing of the signals. We apply the method to driven van der Pol oscillator and to experimental data of human heart rate variability and respiration.
In this paper, synchronization of fractional order Coullet system with precise and also unknown parameters are studied. The proposed method which is based on the adaptive backstepping, has been developed to synchronize two chaotic systems with the same or partially different attractor. Sufficient conditions for the synchronization are analytically obtained. There after an adaptive control law is derived to make the states of two slightly mismatched chaotic Coullet systems synchronized. The stability analysis is then proved using the Lyapunov stability theorem. It is the privilege of the approach that only needs a single controller signal to realize the synchronization task. A numerical simulation verifies the significance of the proposed controller especially for the chaotic synchronization task.
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its two units by two competing mechanisms: An exponential decrease of the coupling strength is compensated by an increase due to de-synchronized activity. This mechanism prevents the network from reaching a steady state. Numerical simulations of a coupled map lattice show chaotic trajectories of de-synchronized units interrupted by pulses of mutually synchronized clusters. These pulses occur on all scales, sometimes extending to the entire network. Clusters of synchronized units can be triggered by a small group of synchronized units.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا