Do you want to publish a course? Click here

Generalized synchronization of chaos in autonomous systems

111   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system can be synchronized to each other but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables nor it needs to be active for all times for achieving generalized synchronization. The procedure is based on the analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.



rate research

Read More

It is shown that the synchronization behavior of a system of chaotic maps subject to either an external forcing or a coupling function of their internal variables can be inferred from the behavior of a single element in the system, which can be seen as a single drive-response map. From the conditions for stable synchronization in this single driven-map model with minimal ingredients, we find minimal conditions for the emergence of complete and generalized chaos synchronization in both driven and autonomous associated systems. Our results show that the presence of a common drive or a coupling function for all times is not indispensable for reaching synchronization in a system of chaotic oscillators, nor is the simultaneous sharing of a field, either external or endogenous, by all the elements. In the case of an autonomous system, the coupling function does not need to depend on all the internal variables for achieving synchronization and its functional form is not crucial for generalized synchronization. What becomes essential for reaching synchronization in an extended system is the sharing of some minimal information by its elements, on the average, over long times, independently of the nature (external or internal) of its source.
The properties of functional relation between a non-invertible chaotic drive and a response map in the regime of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation between the current states of the maps, the functional relation becomes apparent when a sufficient interval of driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation and illustrates the main theoretical conclusions using numerical simulations.
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunovs direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lv system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.
59 - Marcin Daszkiewicz 2017
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
Small networks of chaotic units which are coupled by their time-delayed variables, are investigated. In spite of the time delay, the units can synchronize isochronally, i.e. without time shift. Moreover, networks can not only synchronize completely, but can also split into different synchronized sublattices. These synchronization patterns are stable attractors of the network dynamics. Different networks with their associated behaviors and synchronization patterns are presented. In particular, we investigate sublattice synchronization, symmetry breaking, spreading chaotic motifs, synchronization by restoring symmetry and cooperative pairwise synchronization of a bipartite tree.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا