Do you want to publish a course? Click here

Optical Production of Stable Ultracold $^{88}$Sr$_2$ Molecules

148   0   0.0 ( 0 )
 Added by Tanya Zelevinsky
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr$_2$ in the absolute ground quantum state. Lattice-trapped Sr$_2$ is of interest to frequency metrology and ultracold chemistry.



rate research

Read More

87 - J. M. Sage 2005
We demonstrate the production of ultracold polar RbCs molecules in their vibronic ground state, via photoassociation of laser-cooled atoms followed by a laser-stimulated state transfer process. The resulting sample of $X ^1Sigma^+ (v=0)$ molecules has a translational temperature of $sim100 mu$K and a narrow distribution of rotational states. With the method described here it should be possible to produce samples even colder in all degrees of freedom, as well as other bi-alkali species.
We associate Sr atom pairs on sites of a Mott insulator optically and coherently into weakly-bound ground-state molecules, achieving an efficiency above 80%. This efficiency is 2.5 times higher than in our previous work [S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Phys. Rev. Lett. 109, 115302 (2012)] and obtained through two improvements. First, the lifetime of the molecules is increased beyond one minute by using an optical lattice wavelength that is further detuned from molecular transitions. Second, we compensate undesired dynamic light shifts that occur during the stimulated Raman adiabatic passage (STIRAP) used for molecule association. We also characterize and model STIRAP, providing insights into its limitations. Our work shows that significant molecule association efficiencies can be achieved even for atomic species or mixtures that lack Feshbach resonances suitable for magnetoassociation.
We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X$^1Sigma_g^+$ state of the $^{88}$Sr$_2$ dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, $a_{88}=-1.4(6) a_0$. For the intermediate state, we use a bound level on the metastable $^1S_0$-$^3P_1$ potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.
We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
A barrier to realizing the potential of molecules for quantum information science applications is a lack of high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected through polarization rotation of an off-resonant probe laser beam. Using arb and rbcs as examples, we construct a formalism for choosing the molecular state to be imaged and the excited electronic states involved in off-resonant coupling. Our proposal establishes the relevant parameters for achieving degree-level polarization rotations for bulk molecular gases, thus enabling high-fidelity nondestructive imaging. We additionally outline requirements for the high-fidelity imaging of individually trapped molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا