Do you want to publish a course? Click here

Optical Production of Ultracold Polar Molecules

88   0   0.0 ( 0 )
 Added by David DeMille
 Publication date 2005
  fields Physics
and research's language is English
 Authors J. M. Sage




Ask ChatGPT about the research

We demonstrate the production of ultracold polar RbCs molecules in their vibronic ground state, via photoassociation of laser-cooled atoms followed by a laser-stimulated state transfer process. The resulting sample of $X ^1Sigma^+ (v=0)$ molecules has a translational temperature of $sim100 mu$K and a narrow distribution of rotational states. With the method described here it should be possible to produce samples even colder in all degrees of freedom, as well as other bi-alkali species.



rate research

Read More

We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr$_2$ in the absolute ground quantum state. Lattice-trapped Sr$_2$ is of interest to frequency metrology and ultracold chemistry.
288 - M. Okano , H. Hara , M. Muramatsu 2009
We have successfully implemented the first simultaneous magneto-optical trapping (MOT) of lithium ($^6$Li) and ytterbium ($^{174}$Yb) atoms, towards production of ultracold polar molecules of LiYb. For this purpose, we developed the dual atomic oven which contains both atomic species as an atom source and successfully observed the spectra of the Li and Yb atoms in the atomic beams from the dual atomic oven. We constructed the vacuum chamber including the glass cell with the windows made of zinc selenium (ZnSe) for the CO$_2$ lasers, which are the useful light sources of optical trapping for evaporative and sympathetic cooling. Typical atom numbers and temperatures in the compressed MOT are 7$times10^3$ atoms, 640 $mu$K for $^6$Li, 7$times10^4$ atoms and 60 $mu$K for $^{174}$Yb, respectively.
The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin $^{88}$Sr$_2$ molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.
We report the creation and characterization of a near quantum-degenerate gas of polar $^{40}$K-$^{87}$Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of $4cdot10^4$ polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of $T/T_F=3$. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting ultracold chemical processes. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا