Do you want to publish a course? Click here

Nondestructive dispersive imaging of rotationally excited ultracold molecules

128   0   0.0 ( 0 )
 Added by Michael Highman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A barrier to realizing the potential of molecules for quantum information science applications is a lack of high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected through polarization rotation of an off-resonant probe laser beam. Using arb and rbcs as examples, we construct a formalism for choosing the molecular state to be imaged and the excited electronic states involved in off-resonant coupling. Our proposal establishes the relevant parameters for achieving degree-level polarization rotations for bulk molecular gases, thus enabling high-fidelity nondestructive imaging. We additionally outline requirements for the high-fidelity imaging of individually trapped molecules.



rate research

Read More

We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr$_2$ in the absolute ground quantum state. Lattice-trapped Sr$_2$ is of interest to frequency metrology and ultracold chemistry.
Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding $10^{13}$ via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunneling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties like size, polarizability and type of binding they inherit from the Rydberg atom are of interest. An open question in the field is the reduced lifetime of the molecules compared to the corresponding atomic Rydberg states. In this letter we present an experimental study on the lifetimes of the ^3Sigma (5s-35s) molecule in its vibrational ground state and in an excited state. We show that the lifetimes depends on the density of ground state atoms and that this can be described in the frame of a classical scattering between the molecules and ground state atoms. We also find that the excited molecular state has an even more reduced lifetime compared to the ground state which can be attributed to an inward penetration of the bound atomic pair due to imperfect quantum reflection that takes place in the special shape of the molecular potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا