Do you want to publish a course? Click here

Limits on dust emission from z~5 LBGs and their local environments

148   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 1.2mm MAMBO-2 observations of a field which is over-dense in Lyman Break Galaxies (LBGs) at z~5. The field includes seven spectroscopically-confirmed LBGs contained within a narrow (z=4.95+/-0.08) redshift range and an eighth at z=5.2. We do not detect any individual source to a limit of 1.6 mJy/beam (2*rms). When stacking the flux from the positions of all eight galaxies, we obtain a limit to the average 1.2 mm flux of these sources of 0.6mJy/beam. This limit is consistent with FIR imaging in other fields which are over-dense in UV-bright galaxies at z~5. Independently and combined, these limits constrain the FIR luminosity (8-1000 micron) to a typical z~5 LBG of LFIR<~3x10^11 Lsun, implying a dust mass of Mdust<~10^8 Msun (both assuming a grey body at 30K). This LFIR limit is an order of magnitude fainter than the LFIR of lower redshift sub-mm sources (z~1-3). We see no emission from any other sources within the field at the above level. While this is not unexpected given millimetre source counts, the clustered LBGs trace significantly over-dense large scale structure in the field at z = 4.95. The lack of any such detection in either this or the previous work, implies that massive, obscured star-forming galaxies may not always trace the same structures as over-densities of LBGs, at least on the length scale probed here. We briefly discuss the implications of these results for future observations with ALMA.



rate research

Read More

We investigate the physical and morphological properties of LBGs at z ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyalpha emission. We selected U-dropout galaxies from the z-detected GOODS MUSIC catalog, by adapting the classical Lyman Break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands photometry, we determined the physical properties of the galaxies, through a standard spectral energy distribution fitting with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations, i.e. the 24mu m observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M_20 and ellipticity), we characterized the rest-frame UV morphology of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyalpha line in the optical spectra. We find that, unlike at higher redshift, the dependence of physical properties on the Lyalpha line is milder: galaxies without Lyalpha in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, SFRs, X-ray emission as well as UV morphology do not depend strongly on the presence of the line emission. A simple scenario where all LBGs have intrinsically high Lyalpha emission, but where dust and neutral hydrogen content (which shape the final appearance of the Lyalpha) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z~3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.
94 - Xiangcheng Ma 2019
We present a suite of 34 high-resolution cosmological zoom-in simulations consisting of thousands of halos up to M_halo~10^12 M_sun (M_star~10^10.5 M_sun) at z>=5 from the Feedback in Realistic Environments project. We post-process our simulations with a three-dimensional Monte Carlo dust radiative transfer code to study dust extinction, dust emission, and dust temperature within these simulated z>=5 galaxies. Our sample forms a tight correlation between infrared excess (IRX=F_IR/F_UV) and ultraviolet (UV)-continuum slope (beta_UV), despite the patchy, clumpy dust geometry shown in our simulations. We find that the IRX-beta_UV relation is mainly determined by the shape of the extinction curve and is independent of its normalization (set by the dust-to-gas ratio). The bolometric IR luminosity (L_IR) correlates with the intrinsic UV luminosity and the star formation rate (SFR) averaged over the past 10 Myr. We predict that at a given L_IR, the peak wavelength of the dust spectral energy distributions for z>=5 galaxies is smaller by a factor of 2 (due to higher dust temperatures on average) than at z=0. The higher dust temperatures are driven by higher specific SFRs and SFR surface densities with increasing redshift. We derive the galaxy UV luminosity functions (LFs) at z=5-10 from our simulations and confirm that a heavy attenuation is required to reproduce the observed bright-end UVLFs. We also predict the IRLFs and UV luminosity densities at z=5-10. We discuss the implications of our results on current and future observations probing dust attenuation and emission in z>=5 galaxies.
Recent analyses suggest that distance residuals measured from Type Ia supernovae (SNe Ia) are correlated with local host galaxy properties within a few kpc of the SN explosion. However, the well-established correlation with global host galaxy properties is nearly as significant, with a shift of 0.06 mag across a low to high mass boundary (the mass step). Here, with 273 SNe Ia at $z<0.1$, we investigate whether stellar masses and rest-frame $u-g$ colors of regions within 1.5 kpc of the SN Ia explosion site are significantly better correlated with SN distance measurements than global properties or properties measured at random locations in SN hosts. At $lesssim2sigma$ significance, local properties tend to correlate with distance residuals better than properties at random locations, though despite using the largest low-$z$ sample to date we cannot definitively prove that a local correlation is more significant than a random correlation. Our data hint that SNe observed by surveys that do not target a pre-selected set of galaxies may have a larger local mass step than SNe from surveys that do, an increase of $0.071pm0.036$ mag (2.0$sigma$). We find a $3sigma$ local mass step after global mass correction, evidence that SNe Ia should be corrected for their local mass, but we note that this effect is insignificant in the targeted low-$z$ sample. Only the local mass step remains significant at $>2sigma$ after global mass correction, and we conservatively estimate a systematic shift in H$_0$ measurements of -0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$ with an additional uncertainty of 0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$, $sim$10% of the present uncertainty.
We study the far-infrared emission from the nearby spiral galaxy M33 in order to investigate the dust physical properties such as the temperature and the luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350 and 500 micron) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 micron and Spitzer-MIPS 24 and 70 micron data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the cool dust grains are heated at temperatures between 11 and 28 K with the lowest temperatures found in the outskirts of the galaxy and the highest ones in the center and in the bright HII regions. The infrared/submillimeter total luminosity (5 - 1000 micron) is estimated to be 1.9x10^9 Lsun. 59% of the total luminosity of the galaxy is produced by the cool dust grains (~15 K) while the rest 41% is produced by warm dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly enhanced in the center of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms) we find that the fraction of the emission in the disk in the mid-infrared (24 micron) is 21%, while it gradually rises up to 57% in the submillimeter (500 micron). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The cool dust inside the disk is heated at a narrow range of temperatures between 18 and 15 K (going from the center to the outer parts of the galaxy).
We investigate whether stellar dust sources i.e. asymptotic giant branch (AGB) stars and supernovae (SNe) can account for dust detected in 5<z<6.5 quasars (QSOs). We calculate the required dust yields per AGB star and per SN using the dust masses of QSOs inferred from their millimeter emission and stellar masses approximated as the difference between the dynamical and the H_2 gas masses of these objects. We find that AGB stars are not efficient enough to form dust in the majority of the z>5 QSOs, whereas SNe may be able to account for dust in some QSOs. However, they require very high dust yields even for a top-heavy initial mass function. This suggests additional non-stellar dust formation mechanism e.g. significant dust grain growth in the interstellar medium of at least three out of nine z>5 QSOs. SNe (but not AGB stars) may deliver enough heavy elements to fuel this growth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا