Do you want to publish a course? Click here

On exponential growth for a certain class of linear systems

144   0   0.0 ( 0 )
 Added by Ryoki Fukushima
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We consider a class of stochastic growth models on the integer lattice which includes various interesting examples such as the number of open paths in oriented percolation and the binary contact path process. Under some mild assumptions, we show that the total mass of the process grows exponentially in time whenever it survives. More precisely, we prove that there exists an open path, oriented in time, along which the mass grows exponentially fast.



rate research

Read More

We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. The class contains examples such as binary contact path process and potlatch process. We show the equivalence between the slow population growth and localization property that the time integral of the replica overlap diverges. We also prove, under reasonable assumptions, a localization property in a stronger form that the spatial distribution of the population does not decay uniformly in space.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.: Central Limit Theorem for a Class of Linear Systems, Electron. J. Probab. Vol. 14, No. 34, 960--977. (2009)] can be extended to wider class of models so that it covers the cases of potlatch/smoothing processes.
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.
156 - Jesse Goodman 2009
In invasion percolation, the edges of successively maximal weight (the outlets) divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree, the ponds are shown to grow exponentially, with law of large numbers, central limit theorem and large deviation results. The tail asymptotics for a fixed pond are also studied and are shown to be related to the asymptotics of a critical percolation cluster, with a logarithmic correction.
We introduce a formula for translating any upper bound on the percolation threshold of a lattice g into a lower bound on the exponential growth rate of lattice animals $a(G)$ and vice-versa. We exploit this to improve on the best known asymptotic bounds on $a(mathbb{Z}^d)$ as $dto infty$. Our formula remains valid if instead of lattice animals we enumerate certain sub-species called interfaces. Enumerating interfaces leads to functional duality formulas that are tightly connected to percolation and are not valid for lattice animals, as well as to strict inequalities for the percolation threshold. Incidentally, we prove that the rate of the exponential decay of the cluster size distribution of Bernoulli percolation is a continuous function of $pin (0,1)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا