Do you want to publish a course? Click here

A Note on the Diffusive Scaling Limit for a Class of Linear Systems

151   0   0.0 ( 0 )
 Added by Nobuo Yoshida
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.: Central Limit Theorem for a Class of Linear Systems, Electron. J. Probab. Vol. 14, No. 34, 960--977. (2009)] can be extended to wider class of models so that it covers the cases of potlatch/smoothing processes.



rate research

Read More

We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. The class contains examples such as binary contact path process and potlatch process. We show the equivalence between the slow population growth and localization property that the time integral of the replica overlap diverges. We also prove, under reasonable assumptions, a localization property in a stronger form that the spatial distribution of the population does not decay uniformly in space.
We consider gradient fields $(phi_x:xin mathbb{Z}^d)$ whose law takes the Gibbs--Boltzmann form $Z^{-1}exp{-sum_{< x,y>}V(phi_y-phi_x)}$, where the sum runs over nearest neighbors. We assume that the potential $V$ admits the representation [V(eta):=-logintvarrho({d}kappa)expbiggl[-{1/2}kappaet a^2biggr],] where $varrho$ is a positive measure with compact support in $(0,infty)$. Hence, the potential $V$ is symmetric, but nonconvex in general. While for strictly convex $V$s, the translation-invariant, ergodic gradient Gibbs measures are completely characterized by their tilt, a nonconvex potential as above may lead to several ergodic gradient Gibbs measures with zero tilt. Still, every ergodic, zero-tilt gradient Gibbs measure for the potential $V$ above scales to a Gaussian free field.
We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal control. We propose an $N$-particles Markovian optimal control problem approximating the McKean-Vlasov one and we prove the convergence in relative entropy, total variation and Wasserstein distance of the law of the former to the law of the latter when $N$ goes to infinity. Some McKean-Vlasov optimal control problems with singular cost function and the relation of these problems with the mathematical theory of Bose-Einstein condensation is also established.
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا