Do you want to publish a course? Click here

An Absence of Neutrinos Associated with Cosmic Ray Acceleration in Gamma-Ray Bursts

142   0   0.0 ( 0 )
 Added by Nathan Whitehorn
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.



rate research

Read More

143 - K. Asakura , A. Gando , Y. Gando 2015
We search for electron anti-neutrinos ($overline{ u}_e$) from long and short-duration gamma-ray bursts~(GRBs) using data taken by the KamLAND detector from August 2002 to June 2013. No statistically significant excess over the background level is found. We place the tightest upper limits on $overline{ u}_e$ fluence from GRBs below 7 MeV and place first constraints on the relation between $overline{ u}_e$ luminosity and effective temperature.
A search for neutrinos produced in coincidence with Gamma-Ray Bursts(GRB) was conducted with the Super-Kamiokande (SK) detector. Between December 2008 and March 2017, the Gamma-ray Coordinates Network recorded 2208 GRBs that occurred during normal SK operation. Several time windows around each GRB were used to search for coincident neutrino events. No statistically significant signal in excess of the estimated backgrounds was detected. The $bar u_e$ fluence in the range from 8 MeV to 100 MeV in positron total energy for $bar u_e+prightarrow e^{+}+n$ was found to be less than $rm 5.07times10^5$ cm$^{-2}$ per GRB in 90% C.L. Upper bounds on the fluence as a function of neutrino energy were also obtained.
174 - David Bersier 2012
The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of data are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
In this work the efficiency of particle acceleration at the forward shock right after the SN outburst for the particular case of the well-known SN 1993J is analyzed. Plasma instabilities driven by the energetic particles accelerated at the shock front grow over intraday timescales and drive a fast amplification of the magnetic field at the shock, that can explain the magnetic field strengths deduced from the radio monitoring of the source. The maximum particle energy is found to reach 1-10 PeV depending on the instability dominating the amplification process. We derive the time dependent particle spectra and the associated hadronic signatures of secondary particles arising from proton proton interactions. We find that the Cherenkov Telescope Array (CTA) should easily detect objects like SN 1993J in particular above 1 TeV, while current generation of Cherenkov telescopes such as H.E.S.S. could only marginally detect such events. The gamma-ray signal is found to be heavily absorbed by pair production process during the first week after the outburst. We predict a low neutrino flux above 10 TeV, implying a detectability horizon with a KM3NeT-type telescope of 1 Mpc only. We finally discuss the essential parameters that control the particle acceleration and gamma-ray emission in other type of SNe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا