Do you want to publish a course? Click here

The supernovae associated with gamma-ray bursts

219   0   0.0 ( 0 )
 Added by David Bersier
 Publication date 2012
  fields Physics
and research's language is English
 Authors David Bersier




Ask ChatGPT about the research

The connection between long GRBs and supernovae is now well established. I briefly review the evidence in favor of this connection and summarise where we are observationally. I also use a few events to exemplify what should be done and what type of data are needed. I also look at what we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad picture of stellar explosions.



rate research

Read More

The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
We present the first three-dimensional (3D) smoothed-particle-hydrodynamics (SPH) simulations of the induced gravitational collapse (IGC) scenario of long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe). We simulate the SN explosion of a carbon-oxygen core (CO$_{rm core}$) forming a binary system with a neutron star (NS) companion. We follow the evolution of the SN ejecta, including their morphological structure, subjected to the gravitational field of both the new NS ($ u$NS) formed at the center of the SN, and the one of the NS companion. We compute the accretion rate of the SN ejecta onto the NS companion as well as onto the $ u$NS from SN matter fallback. We determine the fate of the binary system for a wide parameter space including different CO$_{rm core}$ and NS companion masses, orbital periods and SN explosion geometry and energies. We identify, for selected NS nuclear equations-of-state, the binary parameters leading the NS companion, by hypercritical accretion, either to the mass-shedding limit, or to the secular axisymmetric instability for gravitational collapse to a black hole (BH), or to a more massive, fast rotating, stable NS. We also assess whether the binary remains or not gravitationally bound after the SN explosion, hence exploring the space of binary and SN explosion parameters leading to $ u$NS-NS and $ u$NS-BH binaries. The consequences of our results for the modeling of long GRBs, i.e. X-ray flashes and binary-driven hypernovae, are discussed.
It is now accepted that long duration gamma-ray bursts (GRBs) are produced during the collapse of a massive star. The standard collapsar model predicts that a broad-lined and luminous Type Ic core-collapse supernova (SN) accompanies every long-duration GRB. This association has been confirmed in observations of several nearby GRBs. Here we present observations of two nearby long-duration GRBs that challenge this simple view. In the GRBs 060505 and 060614 we demonstrate that no SN emission accompanied these long-duration bursts, down to limits hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425, and fainter than any Type Ic SN ever observed. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in star-forming regions. The absence of a SN to such deep limits is qualitatively different from all previous nearby long GRBs and suggests a new phenomenological type of massive stellar death. From the supplementary material: Now we have observed SN-less GRBs in star-forming regions, suggesting that a non-detection of a SN does not preclude a massive progenitor. The position of the GRB, i.e. in a star-forming region or in an older component, may be the only way to discriminate between merging compact objects and massive stars as progenitors. In fact, several host galaxies for short GRBs have been found to be as actively star-forming as some host galaxies of long-duration GRBs. The GRB labels long and short have become synonymous with massive stars and other progenitors. These distinctions may need to be relaxed.
146 - B. McBreen , S. Foley , L. Hanlon 2010
It is now more than 40 years since the discovery of gamma-ray bursts (GRBs) and in the last two decades there has been major progress in the observations of bursts, the afterglows and their host galaxies. This recent progress has been fueled by the ability of gamma-ray telescopes to quickly localise GRBs and the rapid follow-up observations with multi-wavelength instruments in space and on the ground. A total of 674 GRBs have been localised to date using the coded aperture masks of the four gamma-ray missions, BeppoSAX, HETE II, INTEGRAL and Swift. As a result there are now high quality observations of more than 100 GRBs, including afterglows and host galaxies, revealing the richness and progress in this field. The observations of GRBs cover more than 20 orders of magnitude in energy, from 10^-5 eV to 10^15 eV and also in two non-electromagnetic channels, neutrinos and gravitational waves. However the continuation of progress relies on space based instruments to detect and rapidly localise GRBs and distribute the coordinates.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا