No Arabic abstract
We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of Rb atoms prepared in the internal states $ket{1}equivket{F=1, m_F=-1}$ and $ket{2}equivket{F=2, m_F=1}$ for the precision measurement of the interspecies scattering length $a_{12}$ with a relative uncertainty of $1.6times 10^{-4}$. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schr{o}dinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio $a_{12}/a_{11}$, where $a_{11}$ is the intra-species scattering length of a highly populated component 1, and is largely decoupled from the scattering length $a_{22}$, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value $a_{12}=98.006(16),a_0$, where $a_0$ is the Bohr radius. Our reported value is in a reasonable agreement with the theoretical prediction $a_{12}=98.13(10),a_0$ but deviates significantly from the previously measured value $a_{12}=97.66,a_0$ cite{Mertes07} which is commonly used in the characterisation of spin dynamics in degenerate Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length $a_{22}=95.44(7),a_0$ which also deviates from the previously reported value $a_{22}=95.0,a_0$ cite{Mertes07}. We characterise two-body losses for the component 2 and obtain the loss coefficients ${gamma_{12}=1.51(18)times10^{-14} textrm{cm}^3/textrm{s}}$ and ${gamma_{22}=8.1(3)times10^{-14} textrm{cm}^3/textrm{s}}$.
We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark and dark-dark solitons with our analytical prediction and with that of Painleve-analysis of the dynamical equation. We demonstrate that tuning the inter-species scattering length away from the predicted value (keeping the intra-species coupling fixed) breaks the stability of the soliton pairs.
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors phase mixing. Here g11, g22, and g12 are the intra- and intercomponent interaction strengths, respectively. Taking a d-dimensional infinitely deep square well potential of width L as an example, a simple scaling analysis shows that if d=1 (d=3), phase separation will be suppressed as Lrightarrow0 (Lrightarrowinfty) whether the condition g11g22<g122 is satisfied or not. In the intermediate case of d=2, the width L is irrelevant but again phase separation can be partially or even completely suppressed even if g11g22<g122. Moreover, the miscibility-immiscibility transition is turned from a first-order one into a second-order one by the kinetic energy. All these results carry over to d-dimensional harmonic potentials, where the harmonic oscillator length {xi}ho plays the role of L. Our finding provides a scenario of controlling the miscibility-immiscibility transition of a two-component condensate by changing the confinement, instead of the conventional approach of changing the values of the gs.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equations unification of quantum mechanics and special relativity. Though the oscillatory motions large frequency and small amplitude have precluded its measurement with electrons, zitterbewegung is observable via quantum simulation. We engineered an environment for 87Rb Bose-Einstein condensates where the constituent atoms behaved like relativistic particles subject to the one-dimensional Dirac equation. With direct imaging, we observed the sub-micrometer trembling motion of these clouds, demonstrating the utility of neutral ultracold quantum gases for simulating Dirac particles.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interparticle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.